
Bayesian Problem-Solving Applied to Scheduling

by

Othar Hansson

A. B. (Columbia University) 1986
M.S. (University of California at Los Angeles) 1988

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Stuart J. Russell, Chair

Professor Steven R. McCanne

Professor Kenneth Y. Goldberg

Fall 1998

Bayesian Problem-Solving Applied to Scheduling

Copyright © 1998 by Othar Hansson

Abstract

This dissertation describes several advances to the theory and practice of artificial intelligence scheduling
and constraint-satisfaction techniques. I have developed and implemented these techniques during the con-
struction of DTS, the Decision-Theoretic Scheduler, and its successor, SchedKit, a toolkit of scheduling
algorithms and data structures.

The dissertation describes and analyzes the three orthogonal approaches to improving a scheduler’s perfor-
mance. These are: (1) reducing the size of the state space to be searched, (2) reducing the per-state cost of
state generation and evaluation, and (3) reducing the number of states examined by selective search.

To reduce the size of the state space, I have developed several new preprocessing algorithms designed to
exploit resource constraints, including resource capacity and resource/task compatibility. Experiments show
that it is possible to exploit resource capacity constraints efficiently despite their inherently disjunctive
nature.

To reduce the cost of state generation, I employ computational geometry data structures that optimize incre-
mental heuristic evaluation, constraint-checking and state-variable maintenance. These data structures can
be compiled from a formal attribute grammar specification of the heuristics and constraints. Experience with
these techniques in DTS shows significant speedups and other advantages over manually-coded software.

Finally, to reduce the number of states examined during search, I have applied the Bayesian Problem-Solv-
ing (BPS) approach to the problem of search ordering in backtracking algorithms. The approach estimates,
for each subtree, the search cost and probability that a solution exists. These estimates are conditioned on
raw heuristic features used by other ordering techniques from the literature. Experiments with the BPS
ordering heuristic on a state-of-the-art propositional satisfiability solver show that it overcomes a perfor-
mance anomaly of an existing strong heuristic on two sets of benchmark problems.

Dedication

I dedicate this dissertation to my wife I-Chun Lin and my parents
and brothers and nieces and grandparents and aunts and in-laws.
Their many examples of tenacity, achievement, generosity and love
continue to be the greatest inspiration for me.

Acknowledgements

As Gene Lawler said of himself, “I entered graduate school with little purpose and much innocence.” I must
acknowledge the great number of people who have rectified that situation for me, and thank most of them.

I am indebted to a number of excellent academic mentors. I met Rich Korf in my first day at Columbia, and
he, along with Zvi Galil and Moti Yung, ensured that Andy Mayer and I could pursue our research in excel-
lent facilities while still undergraduates. At UCLA, Milos Ercegovac, Eli Gafni and Judea Pearl (along with
USC’s Ward Edwards) stuck their necks out for me during my difficult final year as I arranged my move to
Berkeley.

Stuart Russell gave me the miraculous opportunity to transfer to Berkeley, and has treated me as a colleague
since our first meeting. Although we have not always agreed on everything, I thank him for the considerable
time he has invested in me. The other members of my examining and dissertation committees have also
shown me great grace and patience.

I have learned a lot from many excellent fellow students and colleagues at Berkeley, HRI and Thinkbank: I
particularly thank Jordan Hayes, Kirsten Neilsen and Chuck Ocheret, who have supported me through good
times, bad times and truly weird times. My many NASA collaborators were the first to give me access to
real-world problems: I must thank John Bresina, Wray Buntine, Peter Cheeseman, Mark Drummond, Peter
Friedland, Roger Malina, Steve Minton, Nicola Muscettola, Eric Olson, Barney Pell, Keith Swanson and
Monte Zweben for their help and support.

Finally, I thank all of the great teachers and great students I have had over the years.

CHAPTER 1... Introduction 1

1.1. Contributions and Structure of the Dissertation ...1
1.1.1. A Note on the Title ..2
1.2. The Scheduling Problem ..3
1.3. Constraint-Satisfaction ...4
1.3.1. Continuous CSPs ...4
1.3.2. Discrete CSPs ..5
1.3.3. Examples of CSPs..5
1.3.4. Complexity of CSPs and Scheduling Problems...6
1.4. Constrained Optimization...7
1.5. Representing Scheduling Problems ..8
1.5.1. Temporal Constraints...9
1.5.2. Resource Constraints in Scheduling ..9
1.5.3. Oversubscribed Scheduling Problems ...10
1.5.4. Task-Introduction Scheduling ...10
1.6. Components of a Scheduling Search Algorithm ..10
1.6.1. Preprocessing Algorithm ...11
1.6.2. Search Algorithm...11
1.6.3. State Generator ..11
1.7. Summary...12

CHAPTER 2............................Preprocessing Tractable Conjunctions of Disjunctive Constraints 13

2.1. Structure of the Chapter..14
2.2. Background: Shortest Paths and Infinite Capacity14
2.3. Incorporating Resource Capacity in Preprocessing: MPC116
2.4. Aggregating Tasks: MPC2 ...18
2.5. MPC Extensions ...24
2.5.1. Handling other Temporal Constraints ...24
2.5.2. Handling Multiple Resources ..26
2.5.3. Handling Attribute-Based Resource Selection ..26
2.6. Evaluation...26
2.7. Related Work..31
2.8. Summary...33

CHAPTER 3....................................... State Generation using Compiled Interval Data Structures 35

3.1. Structure of the Chapter..36
3.2. Background: State Generation..36
3.3. Background: Interval Trees ..38
3.4. State-Generators using Interval Trees ..40
3.4.1. Representing Heuristic Functions..40
3.4.2. Representing Constraint Checks..40
3.4.3. Generalization to State Variable Maintenance ..41
3.5. Background: Attribute Grammars ..43
3.6. Implementation ...44
3.6.1. Balanced Parse Trees ...46
3.6.2. Node-Oriented Trees ...46
3.6.3. Adding Persistence to the Data Structure ..47
3.7. Examples ..47
3.8. Evaluation...49
3.9. Related Work..50
3.10. Summary...51

CHAPTER 4...Decision-Analytic Search Ordering 53

4.1. Structure of the Chapter..54
4.2. Background: Branch-and-Bound ..54
4.3. Background: Decision Theory..55
4.4. Applying Decision Theory to Search ...59
4.4.1. The Utility of Computation Time ..59
4.5. The Search Ordering Decision ...61
4.5.1. Test-Sequencing with Deadlines ...63
4.6. Evaluation...64
4.6.1. Search Ordering in POSIT...65
4.6.2. Search Ordering using BPS ...67
4.6.3. Earlier Experiments ...69
4.7. Related Work..69
4.8. Summary...70

CHAPTER 5... Summary and Future Directions 71

5.1. Summary...71
5.2. Future Directions ..73
5.2.1. Preprocessing Resource Constraints..73
5.2.2. State-Generation and Resource Management..73
5.2.3. Decision Analytic Search Control ...74

References... 77

1

1 Introduction

Time is the greatest innovator.

------------------------- Francis Bacon

1.1. Contributions and Structure of the Dissertation

Scheduling—the assignment of time and other resources to activities—is a ubiquitous and important prob-
lem, and it has been a focus of theoretical and applied work in operations research, theoretical computer sci-
ence and artificial intelligence for several decades. Many advances in these fields were inspired by the
challenges of representing and solving problems of planning and scheduling. Scheduling is among the top
applications of AI techniques in industrial settings, but theory lags far behind practice in this important
domain.

This dissertation describes several advances to the theory and practice of artificial intelligence scheduling
techniques. I have developed and implemented these techniques during the construction of DTS, the Deci-
sion-Theoretic Scheduler, and its successor, SchedKit, a toolkit of scheduling algorithms and data structures.
These tools have been inspired by and applied to several NASA science planning problems, including the
Extreme Ultraviolet Explorer (EUVE), the Cassini interplanetary mission, and the DS1 asteroid rendezvous
[20, 21, 25, 91, 92]. The technology described here is largely experimental, but is gradually being integrated
into the standard releases for use by NASA scientists. In this dissertation, I have used science planning as
well as classic scheduling and constraint-satisfaction problems to illustrate the techniques I describe.

Because orbiting and interplanetary telescopes are expensive, shared, highly-constrained telerobotic devices,
they are excellent test-cases for scheduling and planning techniques. Man-years of effort were devoted to
scheduling single days of early science missions, such as the Voyager mission (1977-present). The astro-
nomical cost and complexity of planning such missions presents a challenging opportunity to develop auto-
mated scheduling techniques to support or supplant human expert schedulers. For interplanetary missions,
automatic scheduling capabilities are even more important, as human expert schedulers cannot dynamically
reschedule given the high-latency of earth/spacecraft communications.

I have structured the dissertation into three main chapters, each describing one of three orthogonal
approaches to improving a scheduler’s performance. These are: (1) reducing the size of the state space to be
searched, (2) reducing the per-state cost of state generation, and (3) reducing the number of states examined
by selective search. Other important aspects of DTS and SchedKit, such as user interface, database integra-
tion and extension language, are described elsewhere [53, 54].

2

These three main chapters are best understood in light of a stylized “problem-solving cost equation”:

We can reduce problem-solving cost (“seconds/problem”) by reducing any of the three terms on the right-
hand-side. The first term is “seconds/state expansion”, a measure of search cost per state expanded: this is
the topic of Chapter Three. The second term is “state expansions/state space size”: minimizing this is the tra-
ditional goal of heuristic search research, studied here in Chapter Four. The third term, “state space size/
problem,” is a broad characterization of the goal of problem formulation and preprocessing, studied here in
Chapter Two. Finally, an important theme of this dissertation is that if we intend to “learn” or tune tech-
niques for reducing any one of these terms, we require even greater efficiency in the other two terms in order
to allow for efficient experimentation and sampling of problem-solving episodes.

Chapter Two describes my research on reducing the size of the scheduling state space: I have developed sev-
eral new preprocessing algorithms designed to exploit resource constraints, including resource capacity and
resource/task compatibility. For example, one algorithm extends the familiar critical path method to incorpo-
rate capacity constraints. Simple gedanken experiments show that exponential improvements in individual
time bounds are possible: non-gedanken experiments confirm this. These algorithms are similar in spirit, and
easy to implement.

Chapter Three describes my research on reducing the cost of state generation in scheduling search: I have
introduced the use of data structures that optimize heuristic evaluation, constraint-checking and state-vari-
able maintenance by exploiting incremental computation. The data structures derive from computational
geometry research, but I also show how they may be formally specified using attribute grammars. By using
this technology, we can compile data structures that are sophisticated, yet efficient and reliable. The data
structures are optimized for the needs of a particular scheduling application. I describe how the approach can
be used to specify and compile specialized data structures for a number of scheduling applications, and dis-
cuss how the technology might be used to design application-specific schedule editors that check constraints
interactively but efficiently.

Chapter Four describes my research on reducing the number of states examined during search: I apply the
Bayesian Problem-Solver [50, 51, 80] approach to the problem of search ordering in scheduling and con-
straint-satisfaction search. To evaluate BPS in this context, I focus my experiments on the Davis-Putnam-
Loveland backtracking algorithm because the original algorithm has been studied so extensively and effi-
cient realistic implementations are available for instrumentation.

Finally, Chapter Five summarizes the dissertation.

1.1.1. A Note on the Title

The title of this dissertation is unusual: it seems to describe only the results in Chapter Four. In fact, I have
retained my original title to remind myself of the lesson I have learned in this research.

The initial goal for my dissertation work was to experiment with the techniques of Chapter Four in a signifi-
cant real-world setting such as scheduling. But in order to do meaningful experiments, or attempt optimiza-
tion in sophisticated search algorithms for complex scheduling problems, I found it necessary to take
advantage of every speedup available during preprocessing or state generation. My experience suggests that
sophisticated search techniques have not, to date, been fruitful in scheduling precisely because of gaps in the
low-level software infrastructure that is needed to support search applications, particularly adaptive search
applications. Chapters Two and Three describe advances toward a better software infrastructure.

seconds
problem
-------------------- seconds

state expansion
------------------------------------ state expansions

state space size
--------------------------------------- state space size

problem
------------------------------------⋅ ⋅=

3

It is heartening that the three main chapters can describe independent routes to the improvement of schedul-
ing systems. It suggests that unique expertise in graph theory (Chapter 2), data structures (Ch. 3), computa-
tional geometry (Ch. 3), programming language semantics (Ch. 3), decision analysis (Ch. 4), etc., can be
applied to the independent sources of computational cost in scheduling problems. Although I have presented
initial results in this dissertation, it would be outrageous for me to claim expertise in all these fields, and I
eagerly await improvements to this work by other researchers.

1.2. The Scheduling Problem

The scheduling problem—assigning resources to tasks to achieve certain goals despite a set of constraints—
is of obvious practical importance and has been a focus of theoretical and applied work in operations
research and artificial intelligence for several decades. Because of scheduling’s ubiquity and complexity,
small improvements to the state-of-the-art are greeted with enormous interest by practitioners and theoreti-
cians.

There are many varieties of scheduling problems, but most could fit within the following definition. A
scheduling problem is specified by a set of decision variables representing the time and resource assign-
ments of a set of tasks, together with a conjunctive logical formula on the decision variables. The conjunc-
tive formula is interpreted as a set of constraints that must all be satisfied by any legal assignment to the
decision variables. The problem is to find a schedule—an assignment to the decision variables—such that
the constraints are satisfied, if such an assignment exists. Optionally, an objective function (a function of the
variables in an assignment) is stated as part of the problem.

The complexity of a scheduling problem depends on the permitted constraints. If the constraint formula con-
sists only of linear inequalities on the time assignments for tasks (precedence constraints), then the problem
is just that of finding a feasible solution to a linear program, as I will discuss in Chapter Two. As we add
resource constraints, the complexity of the problem increases. For example, the Minimum Job Shop Sched-
uling Problem is a well-studied NP-Complete problem [47]. The problem consists of a set of jobs, each con-
sisting of an ordered set of tasks with specified durations. Each task requires the exclusive use of one
processor from a set of processors. The problem is to minimize the latest completion time over the set of
tasks.

I will use the EUVE Science Planning problem as an example scheduling problem in this chapter.1 The
Extreme Ultraviolet Explorer (EUVE) is a satellite launched into Earth orbit in 1992, and observes in a rela-
tively unexplored spectral band: the extreme ultraviolet (70-760 Å).

The tasks in the EUVE scheduling problem are astronomical observations. Although an initial sky survey
employed short observations, the remainder of the mission consists of lengthy observations. In practice,
however, observations are broken into approximately 30 minute chunks by a variety of unavoidable and
largely unpredictable interruptions.

The resources in this scheduling problem are observational instruments. Although the EUVE has several
onboard instruments, the primary concern is to schedule pointed guest observations which are restricted to
the EUV spectrometer instrument. Another set of instruments, the scanning telescopes, are perpendicular to
the spectrometer, and can be used simultaneously under the obvious geometric constraints.

The constraints in the problem are determined by the positions of observational targets, the position and atti-
tude (orientation) of the Observer platform, and the positions of obstacles such as planets, the sun and atmo-

1. This section is based on personal communication with Dave Meriwether, Eric Olson, Mary Samuel and
Gary Wong of the Center for Extreme Ultraviolet Astrophysics, Berkeley, CA, beginning in 1991.

4

spheric anomalies. Inter-task constraints include observation of a moving target: a constrained sequence of
“pointings.”

Additional constraints ensure the safety of the spacecraft itself. Power constraints ensure that the batteries
have enough power to continue safe operation. Thermal constraints ensure that sensitive instruments do not
point toward the sun.

Finally, the schedule for any NASA science mission must address subjective criteria such as “science return”
(percentage of time spent on observations), “fairness” (in allocating time to competing observing projects),
and “priority” (of scheduled observing projects).

This description addresses only the high-level science planning problem. At a lower level of detail, the com-
mand sequencing problem involves the preparation of actual instructions to send to the spacecraft. For exam-
ple, to fulfill a single science-planning task (e.g., observe the star tau ceti), one must “uplink” a long
sequence of command blocks to the spacecraft (slew to the target, find a calibration “guide star” to lock onto
the target, perform the observation). Each command block in turn includes tremendous detail (before slew-
ing, the slew table must be filled with the precise spacecraft trajectory, etc.).

Many approaches have been proposed for solving scheduling problems. Operations Research practitioners
use such tools as mathematical programming (e.g., mixed-integer programming) or heuristic dispatch (e.g.,
greedy rules applied to construct a schedule on-line). In some cases, even the performance of the heuristic
approaches can be characterized exactly on restricted problem types (see the extensive survey by Lawler et
al. [74]).

The study of scheduling, in academia and industry, includes a number of other important topics which I do
not address in this dissertation. These range from the design of the operations environment to support effi-
cient scheduling (e.g., reduction of setup times in auto plants [16]), to the management of personnel and sup-
ply-chains [48, 132].

1.3. Constraint-Satisfaction

Although other approaches are used, scheduling problems are often posed in the language of constraint sat-
isfaction so as to apply the wealth of research in artificial intelligence on general-purpose constraint-satisfac-
tion algorithms. Practitioners typically customize these algorithms by introducing domain-specific heuristics
that help guide the search for efficient and parsimonious schedules. Constraint satisfaction techniques are
explained in detail in textbooks by Marriott and Stuckey [79], Poole et al. [101] and Tsang [122].

Formally, a constraint-satisfaction problem (CSP) consists of a set of variables together with a set of con-
straints on the legal values of those variables. The CSP is solved when the variables have been instantiated
to a set of values that violate none of the constraints. If all variables are discrete, most of the common algo-
rithms can generate all solutions if desired, but this can require exponential time as there may be exponen-
tially many solutions. A wide variety of problems can be phrased as CSPs, including scheduling, graph-
coloring, diagnosis, circuit verification, interpretation of visual scenes, etc. (Van Hentenryck [123] provides
an interesting survey of applications.)

1.3.1. Continuous CSPs

The continuous CSP, with linear constraints, is the simplest to describe. It is equivalent to a linear program
without an objective function. A continuous CSP consists of a vector of variables ,
together with a set of linear constraints. The constraints can be specified as linear inequalities of the form:

. A consistent set of constraints specifies a convex region. Any point in this region is a solution
to the CSP.

V V1 V2 … Vn, , ,[]=

bi V Ci⋅≤

5

1.3.2. Discrete CSPs

Constraint satisfaction are more commonly applied to problems involving discrete variables. Formally, a dis-
crete CSP consists of a triple:

where V is a set of variables, D is a set of domains, one for each variable, and the relation C is a subset of the
Cartesian product of the domains, specifying legal combinations of variables. For simplicity, assume that all
the domains are equal, assume that all domains consist of the integers 1 through k, and assume that ,
unless otherwise specified.

The standard problem is to find a tuple in that is in C. The enumeration problem is to
find all such tuples. The decision problem is to determine if there exists such a tuple: it is only for problems
with special structure (such as 4-coloring a planar graph) that the decision problem may be solved without
exhibiting such a tuple. An optimization problem can be posed by adding an objective function over tuples in

. (The standard satisfaction problem is a special case of optimization, where the objec-
tive function is known to be uniform over legal tuples.)

Typically, C is given more compactly, as a set of logical statements that must be satisfied by a “legal” vari-
able assignment. The well-known Propositional Satisfiability Problem (SAT) [40, 47, 64] is an example:
constraints on a set of binary variables are given as a boolean formula over the variables, using connectives
“not”, “and” and “or.” The decision problem is to determine if the formula is satisfiable: is there an assign-
ment of values so that the formula evaluates to true? If we convert the formula into conjunctive normal form
(a conjunction of a set of clauses, each of which is a disjunction over variables and their negations), then the
clauses are precisely the constraints in a CSP: each of the clauses (constraints) must be satisfied by the vari-
able assignment.

To model structure among the constraints, the standard view of constraint satisfaction in artificial intelli-
gence uses a graph-theoretic model, developed by Montanari [86], of a network of binary relations (arcs)
among pairs of discrete variables (nodes). The conjunction of the constraints on each arc equals the relation
C. The generalization from binary to higher-order constraints is in most respects straightforward.

A simple problem can be used to explain the terminology. A set of five variables () take
numeric values, with V1 and V2 having the domain {1, 2, 3}, and V3, V4 and V5 having the domain {1, 2}.
The constraint graph in Figure 1-1 illustrates the constraints of the problem. A solution to the problem is,
for example, the assignment {V1 = 1, V2 = 1, V3 = 3, V4 = 1, V5 = 2}, that satisfies all of the inequality con-
straints.

A more familiar problem is the classic Eight Queens problem—placing eight queens on a standard chess-
board such that no two of them “attack” each other by the rules of chess (i.e., each row, column or diagonal
on the chessboard contains at most one queen). Since it is obvious that there will be exactly one queen in
each row, we may number the queens V1, V2, ..., V8, and let Di = {1, 2, ..., 8} be the possible column num-
bers that we can assign to each queen. In this problem, the constraint graph is completely connected.

1.3.3. Examples of CSPs

CSP algorithms can be applied to interpretation or diagnostic problems as well as optimization (allocation
and assignment) problems. A textbook example of an interpretation problem is to assign labels (values)
such as “concave,” “convex” and “shadow” to the edges (variables) in a polyhedral scene. The constraints on
these labels are imposed by solid geometry and lighting [128].

V V1 V2 … Vn, , ,{ }=

D D1 D2 … Dn, , ,{ }=

C D1 D2× …× Dn×{ }⊆ 
 
 
 
 

k 1>

D1 D2× …× Dn×

D1 D2× …× Dn×

V1 V2 … V5, , ,

6

Rather than expressing knowledge which can be used to constrain interpretations, the constraints found in
optimization problems are typically capacity constraints or deadline requirements. A good didactic example
is the Eight Rooks problem, in which eight rooks must be placed on a incomplete chessboard (with missing
squares) so that no two occupy the same row or column. This corresponds to a straightforward scheduling
problem, in which tasks (rooks) must be assigned to resources (columns), so that they can be completed
within a deadline (the width of each row). This problem illustrates resource contention but not precedence
constraints: Fox and Sadeh [44] have discussed extensions of the Eight Rooks problem that correspond to
more sophisticated scheduling problems.

1.3.4. Complexity of CSPs and Scheduling Problems

Even the best algorithms for solving many CSP and scheduling problem classes will require exponential
computation time in the worst case. Consider the special case of propositional satisfiability (SAT). SAT is in
the class of problems NP: it can be solved in polynomial time by a nondeterministic algorithm [47]. In the
case of SAT, such an algorithm would nondeterministically guess a truth assignment for the variables, and
then check whether the assignment satisifes all the clauses.

SAT is also said to be NP-Complete, because every other problem in NP can be reduced to SAT in polyno-
mial time [47]. Thus, if a polynomial-time algorithm exists for SAT, we can use it on any problem in NP by
first reducing problem instances to SAT problem instances (in polynomial time) and then applying the hypo-
thetical polynomial-time SAT algorithm. On the other hand, if any problem in NP can be proved to be intrac-
table (no polynomial-time algorithm exists for it), then SAT would be proven to be intractable as well.

Many interesting scheduling problems are also known to be NP-Complete: Garey and Johnson [47] list over
20 NP-Complete scheduling problems, including the Minimum Job Shop Scheduling Problem discussed
previously. The fact that these problems are NP-Complete strongly suggests that there is no worst-case poly-
nomial-time algorithm for solving them, and that exponential-time search procedures are our best hope. But
heuristic search techniques are often quite effective at reducing the cost of these searches, particularly when
average-case performance is taken into account. This dissertation is concerned with techniques for reducing
the cost of heuristic search procedures for constraint-satisfaction and scheduling problems.

Figure 1-1. Sample CSP Problem.

V1 ∈{1,2,3}

V5 ∈{1,2} V4 ∈{1,2}

V2 ∈{1,2,3}

V3 ∈{1,2,3}

V2 < V3

V4< V5

V5 < V3

V1 < V3

7

1.4. Constrained Optimization

Constraint satisfaction problems are hard because the proportion of assignments that satisfy the constraints
shrinks rapidly as the problem size (e.g., the number of tasks to be scheduled) is increased. The difficulty of
solving such problems by heuristic search forces some practitioners to be content with finding any satisfying
solution.

Constrained optimization refers to the search for that satisfying assignment of the variables which maxi-
mizes an objective. A widely-known optimization technique is branch-and-bound: after each solution is
found in a branching search tree, add a constraint requiring subsequent solutions to have a higher objective
function value, and continue searching until no better solution is possible.

The constrained optimization problem is at least as hard as the constraint satisfaction problem, of course.
The number of satisfying assignments can be exponential in the problem size, making an exhaustive search
for the best solution expensive. In addition, the constrained optimization problem requires the specification
of an objective function, which can ignite political disputes over priorities, costs and risks. For example, the
objective function for a NASA science mission requires negotiation between project scientists (who favor
science return) and spacecraft controllers (who favor spacecraft safety).

Many scheduling practitioners protest that optimization is futile for one of three reasons:

1• The cost of finding the optimal solution exceeds its advantages over the first satisfying solution found.

2• A precise objective function cannot be formulated for the problem.

3• Multiple, conflicting objectives must be considered, and thus a single objective function cannot be for-
mulated.

These attitudes can be heard at any gathering of scheduling researchers, particularly those working on real
problems in industrial or governmental settings. Yet the sentiment is over fifty years old, dating back to the
birth of mathematical programming after World War II. As George Dantzig wrote in a retrospective [32]:

Initially there was no objective function; broad goals were never stated explicitly
in those days because practical planners simply had no way to implement such a
concept. Noncomputability was the chief reason, I believe, for the total lack of
interest in optimization prior to 1947.

Fundamentally, the efficiency of search determines whether optimization is feasible for a problem. I claim
that recently developed techniques, including those introduced here, make it possible to strive for optimiza-
tion, rather than settling for constraint satisfaction.

The second and third arguments suggest that it is impossible to represent the preferences and objectives of an
organization for use in a scheduling system. But the past 25 years of research in multiattribute decision anal-
ysis have produced preference elicitation techniques for modeling conflicting objectives. The fact that many
scheduling problems involve multiple parties (for example, scientists and spacecraft controllers) suggests
that there are still fundamental theoretical difficulties (e.g., Arrow’s theorem on possible intransitivity of
group preferences [5]). But multi-party decision analyses are routine, and there is no reason to believe that
scheduling is impervious to such modeling.

A more common problem is political: how would one explicitly represent the objectives for scheduling the
surgery department of a hospital, without rankling individual patients? Or how would one represent a corpo-
ration’s objectives in labor scheduling without upsetting workers (or violating union contracts). This argu-
ment is essentially that “some things are better left unspoken,” thus banning explicit modeling of objective
functions.

8

But these theoretical and political difficulties should not be considered without acknowledging that objec-
tives are already encoded, implicitly, in existing scheduling and constraint satisfaction applications. One
would be hard-pressed to design a problem-solving system that did not exhibit implicit objectives.

For example, objective functions are implicitly encoded in the search strategies of many constraint satisfac-
tion systems. Consider a search strategy that attempts to find a satisfying solution that includes all priority 1
targets, and only if necessary, one that replaces some of these with priority 2 targets. Such a system assumes
a “lexicographic” objective function that would trade an arbitrary number of priority 2 targets for an addi-
tional priority 1 target. Because the objective function is encoded within the search algorithm or its heuristic
functions, it is difficult to characterize, let along change, the system’s behavior [49].

Moreover, scheduling objectives are often compiled into “policy” constraints in implemented systems. In
science missions, a common constraint concerns sun angle. Because of objectives of instrument health, one
prefers not to point data collection instruments too close to the direction of the sun. This preference is typi-
cally encoded as a constraint on the minimum angle between the telescope boresight and the sun. The fact
that it is a preference, not a constraint, is evidenced by changes in the minimum angle “constraint” over the
lifetime of the mission, as mission planners relax their attitudes toward risk.

As this discussion suggests, in this dissertation (particularly in Chapter Four) I advocate the use of objective
functions. But in fact many of the results are intended to satisfy the rather universal objective of minimizing
computation time. Over time, improved search efficiency will make constrained optimization a feasible
alternative to simple constraint satisfaction for a growing number of domains.

1.5. Representing Scheduling Problems

A large class of scheduling problems can be represented as constraint-satisfaction problems, by representing
attributes of tasks and resources as variables. A schedule is represented as an assignment of values to the
variables. To give the reader some intuition about CSP applications, I describe problem representation in
some detail here: much of the rest of this dissertation focuses on search and reasoning rather than representa-
tion.

Task attributes include the scheduled start and end time, and a resource assignment. We represent the begin-
ning and end of task Ty with variables BTy and ETy. The primary attribute of resources is availability (i.e.,
down-time and work schedules). A schedule is constructed by assigning times and resources to tasks, while
obeying the constraints of the problem.

Constraints capture logical requirements: a typical resource can be used by only one task at a time. Con-
straints also express problem requirements: task Tx requires N units of time, must be completed before task
Ty, and must be completed before a specified date. Van Hentenryck [123] provides concise examples of
scheduling problems represented as CSPs.

Figure 1-2 depicts a portion of the constraint graph for a simple scheduling problem. Only the temporal con-
straints are shown: the completion of task T1 must precede the beginning of task T2, the completions of task
T4 and T5 must coincide, etc. In addition, the resource requirements for T5 are shown: that task requires
seven hours to complete, and uses four resources for those seven hours (one from resource class A, and three
from B).

Representing resources explicitly is a convenient abstraction which avoids the construction of a complete
constraint graph over the tasks. Such a graph would be used to prevent the simultaneous assignment of a pair
of tasks to the same resource. In the explicit representation, indistinguishable resources can be grouped in
pools or classes, whose attributes maintain the number of resources available and in use during an interval.

A scheduling problem may also require the representation of attributes (or state) of domain objects over time
(e.g., the configuration of a production line). For example, tasks T1 and T5 may require a domain object to be

9

in a particular state, while task T2 may require a different state: in this case, T1 and T5 could legally be sched-
uled in parallel, while task T2 may not. If the domain objects can change state without intervention by a
scheduled task (e.g., a battery discharging itself), such behavior must be modeled as well [89, 90].

1.5.1. Temporal Constraints

A scheduling problem consists of two types of temporal constraints:

• Temporal constraints between tasks or fixed time-points. For example, Figure 1-2 shows that T1 must
precede T2. This is equivalent to the constraint .

• Task durations. For example, Figure 1-2 shows that T5 has duration 7. This is equivalent to the constraint
. It is of course possible for a task to have an uncertain duration, specified by an interval:

.

In some cases, it is necessary to produce specific (i.e., numerical) start- and end-times as the output of a
scheduling system. I will call such a schedule a ground schedule, in contrast to a least-commitment schedule,
which consists of bounds on the start- and end-times. Least-commitment schedules are more practical in
many settings, as most ground schedules will be violated as soon as schedule execution begins. As a defini-
tion, I will say that a least-commitment schedule must have the property that a ground schedule can be
extracted from it in polynomial time (by repeatedly fixing times and then propagating constraints).

A technique suggested by the work of Smith and Parra [119] simplifies the representation of least-commit-
ment scheduling problems. Instead of associating two variables (start- and end-time) with each task, we can
associate four variables (earliest-start, latest-start, earliest-finish and latest-finish), and rewrite the inter-task
constraints in the obvious way. A precise assignment to these four variables is a set of bounds on the original
two variables (start-time and end-time).

1.5.2. Resource Constraints in Scheduling

Resource constraints are the primary source of disjunction in scheduling problems, and through disjunction,
computational complexity. In the case of resources with unit capacity (i.e., non-sharable resources), the dis-
junction is easily represented: if Tx and Ty require the use of resource Rz, which has unit capacity, then the

Figure 1-2. Partial Constraint Graph for a Scheduling Problem.

T1

T3

T5

T4

T2

T6
immediately
precedes

sim
ultaneous
end

precedes

precedes

precedes

7 hour duration
1 resource A
3 resources B

ET1 BT2≤

BT5 7+ ET5=
BT5 7+ ET5 BT5 9+≤ ≤

10

executions of Tx and Ty cannot overlap. In other words, it is either the case that Tx precedes Ty, or that
Ty precedes Tx.

In the job-shop scheduling literature, such constraints are often represented in a disjunctive graph [24]. The
nodes of the disjunctive graph represent tasks. Two tasks are joined by an undirected arc if they require the
use of a common resource. Any legal schedule implies an assignment of direction to the undirected arcs:
these arc directions must be mutually consistent, i.e., there can be no directed cycles. The direction imposed
on the arc between two tasks represents the tasks’ ordering in the schedule.

1.5.3. Oversubscribed Scheduling Problems

It is also useful to represent problems which do not, or cannot, require solutions in which every task is
scheduled. Such oversubscription problems are the norm in science planning.

To represent this problem, we introduce a binary variable STy for each task Ty. STy is a binary variable indi-
cating whether Ty is scheduled. Every constraint C(Ty) on Ty can then be rewritten as the logical sentence

: the constraint C(Ty) is enforced if Ty is scheduled.

This technique is related to Lagrangian relaxation, where constraints move into the utility function. A natu-
ral utility function for oversubscribed problems would be to maximize the weighted sum of the STy variables
(interpreting the binary variable as a 0-1 variable).

1.5.4. Task-Introduction Scheduling

Traditionally, scheduling is distinguished from planning by a focus on reasoning about a an externally gener-
ated fixed set of tasks; planning is concerned with the generation of a partially-order set of tasks to achieve
some goal. Fox [43] distinguishes them as follows:

Planning selects and sequences activities such that they achieve one or more
goals and satisfy a set of domain constraints.

Scheduling selects among alternative plans and assigns resources and times for
each activity so that the assignments obey the temporal restrictions of activities
and the capacity limitations of a set of shared resources.

Thus a planning system might feed into a scheduling system.

However, many scheduling applications require the fairly simple selection of additional activities that must
be introduced to meet schedule constraints. I call this task-introduction scheduling. Task-introduction sched-
uling has been implemented in the COLLAGE [72] and HSTS [90] systems, among others. For example, if
each task requires a resource to be in a particular state, then a state-change task (i.e., a reconfiguration)
might need to be added to the schedule.

In the course of my research, I have developed several simple mechanisms that support task-introduction
scheduling. These techniques are described in Chapter 3.

1.6. Components of a Scheduling Search Algorithm

The three main chapters of this dissertation address three central components of a scheduling system. To
help the reader, this section describes how those components interact.

STy C Ty()⇒

11

1.6.1. Preprocessing Algorithm

Preprocessing is the computation of implicit constraints prior to search. For example, in Figure 1-1, the two
explicit “less than” constraints V4 < V5 and V5 < V3 can be composed to form the implicit constraint
V4 < V3. This is simply logical inference on the constraints, together with the transitive semantics of the “<”
relation. Preprocessing techniques are valuable because they reduce the size of the search space: even a
brute-force search can outperform an intelligent “selective” search if preprocessing has sufficiently reduced
the search space.

The DTS and SchedKit systems incorporate several novel preprocessors that combine resource and temporal
constraints. The underlying approach is described and evaluated in Chapter 2.

1.6.2. Search Algorithm

After preprocessing, a search phase is typically required to find a solution to the CSP. There are essentially
two types of search algorithms: backtracking and repair-based.

Backtracking search algorithms partition the space of possible schedules and systematically search through
the hierarchy of partitions for a schedule. We can distinguish between simple backtracking and constraint-
posting search algorithms. A simple backtracking algorithm assigns a variable to a single value at each step
of the search (e.g., assigning the start time of a task to 8AM on a particular day). A constraint-posting search
algorithm instead has the option of posting a constraint on the variable’s value (e.g., assigning the start time
to a particular week, or constraining the task to precede some other task). Much recent research has focused
on the efficiency of simple backtracking and constraint-posting search, particularly in the AI planning com-
munity, where these techniques correspond to total-order and partial-order planning [7, 82]. Because of the
large granularity of its search space, a constraint-posting algorithm is able to prune large portions of the
search tree (e.g., by finding a dead-end as a result of constraining the order of two tasks).

Repair-based search combines the explicitness of simple backtracking with some of the flexibility of con-
straint posting. A typical repair-based search algorithm begins with a randomly generated initial schedule. If
no constraints are violated, the algorithm terminates. Otherwise, a “repair” is made by reassigning a variable
(e.g., changing the start-time for a task), and the algorithm repeats this step until a solution is found, or until
a timeout is exceeded and the algorithm restarts from a new initial schedule. Repair-based search has been
the focus of much scheduling research in recent years [1, 83, 134].

Because they are systematic, backtracking schedulers can determine if a solution does not exist (given
enough time). On the other hand, repair-based schedulers, because they are stochastic, can often provide a
shorter expected running time per problem instance. This is because they both randomize the input (by
choosing an initial schedule) and randomize their decisions. This combines the advantages of the Sherwood
algorithms and Las Vegas algorithms studied in theoretical computer science [23].

Chapter 4 of this dissertation describes a decision-analytic approach to controlling the ordering of search in
a backtracking algorithm.

1.6.3. State Generator

An important practical consideration in designing search algorithms is the speed with which individual
states are “generated.” When a state is generated from its parent, the effects of changes must be propagated
so that (1) constraint violations can be detected, and (2) heuristic evaluations can be made on the resulting
state. Slow constraint propagation and/or heuristic evaluation can make even the most intelligent search
algorithm impractical, even though state generation is rarely more than polynomial time in complexity.
Many well-known AI scheduling systems take several seconds to propagate the effects of a change to the

12

schedule. This restricts these systems to performing only token amounts of search, for example, by relying
on dispatch rules [13, 17].

In retrospect, efficient state generation has been crucial to the performance of most practical applications of
heuristic search. Optimizations of the state generator and heuristic evaluator play an enormous role in appli-
cations as widely varying as chess [78], mathematical programming [130, 131] and speech
understanding [75].

This dissertation describes a very efficient state generator and heuristic evaluator, relying on data structures
that I have adapted from computational geometry applications. I have also designed a “compiler” that can
produce similar data structures for other scheduling applications. These techniques are described in
Chapter 3.

1.7. Summary

As this discussion of search components suggests, there are several ways to improve the effectiveness of
scheduling search algorithms: better preprocessing, better state-generation and better search control are the
three techniques I have focused on in the three main chapters of this dissertation.

13

2 Preprocessing Tractable Conjunctions
of Disjunctive Constraints

The more constraints one imposes, the more one frees one’s
self of the chains that shackle the spirit.

------------------------ Igor Stravinsky

Preprocessing is the opening gambit in conquering a constraint-satisfaction problem. An investment in pre-
processing time may reveal valuable implicit constraints that can be deduced from the problem statement.
Preprocessing techniques are typically of much lower time complexity (polynomial time) than the subse-
quent constraint satisfaction search algorithms (exponential time), but in extreme cases, strong preprocess-
ing techniques can make search unnecessary or extraordinarily efficient. More typically, preprocessing
serves to reduce the size of the state space that must be searched to find a legal schedule, by eliminating vari-
ables, reducing the size of variable domains, or adding constraints. Finally, even in manual scheduling sys-
tems, preprocessing provides valuable guidance to the human scheduler by eliminating possibilities or
detecting inconsistencies.

I have developed several new preprocessing algorithms designed to exploit resource constraints, including
resource capacity and resource/task compatibility. This chapter describes those algorithms. One algorithm,
MPC1, extends the familiar critical path method to incorporate capacity constraints. Another, MPC2, finds
precedence constraints between subprojects based on their internal resource requirements. These algorithms
are similar in spirit, straightforward to implement, and could be independently applied to improve many
existing scheduling systems.

As I discuss at the end of the chapter, resource capacity constraints have often been viewed as a source of
complexity, because they introduce disjunctive constraints. Disjunction is a classic correlate of complexity in
computer science. But this chapter suggests that tractable conjunctions of these disjunctive constraints can
be identified, and their joint implications used to derive tight bounds on the search space during preprocess-
ing or search. In other words, rather than assume that disjunction leads inevitably to complexity, I have
searched for, and found, methods to group disjunctive constraints so that useful constraints (implications)
can be derived from the group at low cost. I anticipate that other, similar techniques can be developed for
constraint satisfaction using this basic approach.

Because the input and output of preprocessing algorithms are of the same data type (both the input and out-
put are sets of constraints, i.e., descriptions of constraint satisfaction problems), they can be composed or
pipelined quite flexibly. In validating one of the algorithms described here, I found that it discovered new
constraints that could be pipelined to increase the effectiveness of a pre-existing preprocessing algorithm.

14

2.1. Structure of the Chapter

The background for this chapter is work on the critical path method and temporal reasoning, as decribed in
Section 2.2. In Section 2.3, I introduce the simplest version of the new technique, MPC (“Method for Pre-
processing Capacity”), for handling unit-capacity resources. The remaining sections describe the handling of
resource calendars, subprojects, and other complications and extensions. I conclude the chapter with an
empirical validation of the effectiveness of two MPC techniques.

2.2. Background: Shortest Paths and Infinite Capacity

Following Meiri [81], we begin with the Simple Temporal Problem (STP): a constraint-satisfaction problem
in which each pair of time points is constrained by at most one constraint. That constraint must specify a
convex interval of the form:

where Xj and Xi are time points, and aij and bij are the minimum and maximum gap, respectively, between
them. A simple constraint such as Xi must precede Xj is modelled by setting aij to zero, and bij to positive
infinity.

A solution to the STP is easily obtained by solving the corresponding set of linear inequalities, which pro-
duces the tightest constraints between each pair of time points.

As Dechter, Meiri and Pearl [36] observed, this system of linear inequalities has a special structure: it is a set
of “difference constraints,” and can be solved by solution of the all-pairs shortest-paths problem in a “dis-
tance graph” constructed based on the constraints. This is the key insight of their DMP preprocessing algo-
rithm for finding the tightest temporal constraints for an STP. The efficient solution of a system of difference
constraints was first demonstrated by Bellman [10], and is described in many combinatorial algorithms text-
books [4, 29].

How is DMP useful in a scheduling problem? Given a problem, we will separate out the temporal difference
constraints, apply the DMP preprocessing algorithm to them, and then use the resulting tighter temporal con-
straints when solving the original scheduling problem. The tighter temporal constraints may force some task
ordering choices, or simply reduce the range of possible start times for each task.

The DMP algorithm works by constructing a “distance graph” based on the STP. If dij is the length of the
shortest path from node i to node j in the graph, node 0 is a designated “origin” node, and eij is the length of
the edge from node i to node j, then by the definition of a shortest path:

.

This implies that . By defining doj=Xj and doi=Xi and eij=bij, we can create a one-to-one map-
ping between edges in the graph and the original difference constraints (in this case, the original constraint

). By similar reasoning, the constraint can be represented by setting eji=(– aij).
Solving the single-source (node 0) shortest-path problem in this graph results in an assignment of minimal
values to the Xi variables such that the original difference-constraints are satisfied. Solving the all-pairs
shortest-path problem can be used to find the tightest possible difference constraints between every pair of
time points [36].

All-pairs shortest-paths algorithms include the familiar Floyd-Warshall algorithm. Most such algorithms are
based on the use of dynamic programming to infer shortest-path lengths based on a recurrence-relation defi-
nition. The Floyd-Warshall algorithm has time complexity in O(n3), where n is the number of time points.
(The complexity of some other all-pairs shortest-paths algorithms is also a function of m, the number of con-

aij Xj Xi– bij≤ ≤

d0j d0i eij+≤

doj doi– ei j≤

Xj Xi– bij≤ ai j Xj Xi–≤

15

straints or edges in the original problem.) Listing 2-1 presents the Floyd-Warshall algorithm, and how it is
used in the DMP preprocessing algorithm.

Listing 2-1 DMP Algorithm.
(This is “pseudo” C++ code which is compilable with suitable auxiliary functions.) The
DMP preprocessing algorithm takes a problem p as input, extracts the constraint graph g
from it, and uses the classic Floyd-Warshall algorithm to tighten the pairwise temporal
constraints represented in g. The processTriangle subroutine checks and updates the short-
est-path information stored on g’s arcs. After calling DMP, subsequent preprocessing steps
(or a scheduling search algorithm) will be able to use the tightened temporal constraints.

void DMP(Problem p) { 1

Graph g = ConstraintGraph(p); 2

FloydWarshall(g); 3

} 4

void processTriangle(Node x, Node y, Node j, Graph g) { 5

if arcExists(y,j,g) { 6

int newLen = arcLen(x,y,g) + arcLen(y,j,g); 7

if (!arcExists(x,j,g) || (newLen<arcLen(x,j,g))) { 8

setLen(x,j,g,newLen); 9

} 10

} 11

} 12

void FloydWarshall(Graph g) { 13

Node x,y,j; 14

List intermed = nodes(g); 15

while (y = pop(intermed)) { 16

List sources = nodes(g); 17

while (x = pop(sources)) { 18

if arcExists(x,y,g) { 19

List destinations= nodes(g); 20

while (j = pop(destinations)) { 21

processTriangle(x,y,j,g); 22

} 23

} 24

} 25

} 26

} 27

16

In many scheduling applications, we are interested only in constraints on events in relation to an absolute
time-line, and not relative constraints between all pairs of events. If absolute constraints suffice, the problem
of temporal preprocessing is made even simpler. The tightest absolute constraints can be derived by solving
the single-source and single-destination shortest-path problems, using a “project-start” event as the source
and destination. These problems are efficiently solved using Dijkstra’s algorithm. Using Fibonacci heaps
[29], Dijkstra’s algorithm has time complexity in O(m + n log n). This is almost certainly negligible com-
pared to the exponential cost of a search to solve the remainder of the original scheduling problem. In addi-
tion, one can solve the all-pairs shortest-path problem as n single-source shortest-path algorithms, with
resulting time complexity in O(n(m + n log n)).

2.3. Incorporating Resource Capacity in Preprocessing: MPC1

The DMP preprocessing algorithm is a generalization of the “critical path method” (CPM) that has been
used in project planning and scheduling for 40 years [68, 69]. The critical path between a pair of time points
(typically the start and end of a schedule) is the length of the longest precedence-constrained sequence of
tasks that must occur between the two time-points. Specifically, we can compute the critical path by con-
structing a graph of tasks, labeling each task node with a “cost” corresponding to its duration, and placing
directed arcs between tasks to represent precedence constraints. The project-start and project-end are repre-
sented by dummy task nodes. The critical-path for the project is the highest-cost directed path through the
task nodes between the project-start and project-end nodes.

A major shortcoming of both DMP and the critical path method is that they ignore capacity constraints. For
example, in a complex assembly schedule, the temporal dependencies form a tree, with raw materials
becoming parts, parts becoming subassemblies, etc., until a completed product has been assembled [87, p.
190]. The critical path through such a schedule may be very short, but the resource requirements can be
enormous.

As a result, the temporal constraints derived by the DMP algorithm are often very poor. Some examples will
show the intuition behind the first MPC algorithm, which I call MPC1. Imagine an idealized assembly
schedule (Figure 2-1), in which pairs of subassemblies are repeatedly combined, with each step requiring
one dedicated worker and one time unit. After 2N-1 individual steps, a completed product has been made out
of the 2N original parts. A critical path through this schedule is only O(N) steps long. But if we have a
resource constraint that only c workers can be used in assembling the entire product, the product will not be
complete until at least (2N-1)/c time units have passed. The ratio of the new bound ((2N-1)/c) to the old
bound O(N) shows an exponential increase in the lower-bound on the schedule length. This more-informed
bound may reduce the cost of the search for an optimal schedule.

Another case where MPC performs well is a series-parallel network, as depicted in Figure 2-2. If there is a
resource constraint that only c workers are available, MPC will exploit this constraint to derive more-
informed bounds. Here, MPC’s strong bounds can improve the feasibility of breaking scheduling problems
into multiple pieces, to be solved in parallel (by human experts or machines). If we define this series-parallel
network as four binary trees (each with 2N-1 nodes), and consider the CPM and MPC bounds on the node X
as N increases, we again see an exponential ratio: 2N compared to 2x2N.

These examples show the intuition behind the first MPC algorithm, which I call MPC1. It considers each set
of tasks that (1) occur between two temporal events, and (2) require a common resource. The summed dura-
tion of these tasks, divided by the capacity c for that resource, is a lower bound on the time between the two
events.

In other words, we examine a set of temporal constraints and resource requirements, and derive (possibly
tighter) temporal constraints. A simple alternating algorithm can be used to exploit these constraints in poly-
nomial time:

1. Compute precedence relations using DMP preprocessor.

17

2. Add new constraints derived from precedence, resource sharing, and capacity.

3. Optionally repeat by returning to step 1.

Pseudocode for this algorithm is presented in Listing 2-2. This simple algorithm is trivial to implement, and
as suggested above, it can yield exponentially tighter bounds on the start-times of tasks under resource con-
straints. This corresponds to a smaller search space for automated scheduling algorithms, as well as informa-
tion on bounds that can aid a human scheduler.

In addition to alternating between the DMP and MPC1 algorithms, we can run them concurrently, with each
feeding updated constraints to the other. To do this very efficiently, we require a DMP algorithm imple-
mented using a dynamic all-pairs shortest path algorithm. To communicate between DMP and MPC1, we
add a dynamic “MPC1” edge between every pair of nodes in the original constraint graph. We run DMP as
before, but notify the MPC1 algorithm whenever a new precedence relation is discovered (there can be at
most O(N2) pairs of nodes in the precedence relation, so MPC1 is invoked at most O(N2) times). MPC1 pro-
cesses the precedence relations, and whenever a new MPC1 constraint is discovered, it modifies the length
of the corresponding MPC1 edge. The dynamic all-pairs shortest path algorithm is responsible for incorpo-
rating this edge, and may discover new precedence relations as a result.

Later in the chapter, we present results that validate the effectiveness of MPC1 on a test suite of scheduling
problems. Surprisingly, the effectiveness of MPC1 appears to be in discovering slightly tighter temporal con-
straints that in turn enable DMP to be even more effective. Repeated runs of DMP, interleaved with runs of
MPC1, produce tighter and tighter constraints.

Figure 2-1. Idealized “assembly” schedule.

In this stylized assembly schedule, a finished good is assembled from 2N

parts (in this case, eight parts). In each assembly step, two subassem-
blies are joined. The number of assembly steps is simply the number of

non-leaves, or 2N-1.

finished
good

18

2.4. Aggregating Tasks: MPC2

We can use techniques similar to MPC1 to reason about the aggregate resource requirements of groups of
tasks. In multi-project scheduling, such as scheduling of astronomical observations by different astronomers,
largely independent subprojects compete for the same resources. If these subprojects can be interleaved arbi-
trarily, the search space will be very large. If, however, we can establish, during preprocessing, that two sub-
projects cannot overlap, there are only two possible orderings.

For example, two subprojects with N loosely constrained tasks can be interleaved in C(2N, N) ways.1 The
number of possible orderings C(2N, N) is in O(N !).

Figure 2-3 illustrates a simple example with two subprojects: Light and Dark. Each subproject consists of a
chain of four-day tasks, with the constraint that consecutive tasks can be separated by at most three days.

While there may be no explicit constraints between the two subprojects, it is clear after quick inspection that
they cannot overlap. The following informal proof-by-contradiction shows that this intuition is true (simpler
proofs are possible, but this one is similar to the proof constructed by the MPC2 algorithm).

• Assume that subprojects Light and Dark overlap for N days.

Figure 2-2. Series-Parallel precedence network.

MPC1 can arrive at improved bounds (compared to the critical path
method or the DMP algorithm) for the start-time of task X, permitting
this problem to be decomposed into two portions, e.g., to be solved by
two human scheduling experts. In the generalization of this example,
four binary trees are arranged as shown: the bounds for X are exponen-
tially better using MPC1 rather than temporal preprocessing alone.

1. Pronounced “2N choose N”, C(2N, N) corresponds to how many ways there are to place N identical pegs
into 2N distinct holes [29, p. 101].

X

Tree 1 2 3 4

19

• If Light and Dark overlap at least seven days, then there is a period of seven days in which eight unit-
days of resource capacity are required. This cannot happen.

• If, on the other hand, the subprojects overlap from one to six days, the first task of the latter project and
the last task of the earlier project will require two units of capacity on at least one day. In either case, the
subprojects exceed the resource capacity if they overlap. This cannot happen.

• Thus, they cannot overlap.

How can we formalize and automate this reasoning? The basic conceptual tools I have developed are three
kinds of resource usage profiles: the start-profile, the end-profile and the intermediate-profile.

The start-profile is rs(tα,σ), a lower-bound on cumulative resource-usage as a function of tα, time since the
start of the subproject σ. The end-profile is re(tω,σ), a lower-bound on cumulative remaining resource usage
as a function of tω, time remaining on the subproject σ. The intermediate-profile is ri(δ,σ), a lower-bound on
cumulative resource usage over any interval [t...t+δ] during which the subproject is executing (i.e., such that

Listing 2-2 Single-Stage MPC1 algorithm.

The algorithm has the same loop structure as the Floyd-Warshall algorithm, but applies
resource constraints in addition to temporal constraints to each <source, intermediate
node, destination> triple.

void MPC1(Problem p) { 1

Graph g = ConstraintGraph(p); 2

DMP(g); 3

List sources = tasks(p); 4

while (n1 = pop(sources)) { 5

List destinations = tasks(p); 6

while (n2 = pop(destinations)) { 7

if (precedes(n1,n2,g)) { 8

int durationSum = 0; 9

List intermediate = tasks(p); 10

while (n3 = pop(intermediate)) { 11

if (precedes(n1,n3,g) && precedes(n3,n2,g)) { 12

durationSum = durationSum + duration(n3,g); 13

} 14

} 15

int capacity = 1; // unit capacity 16

updateLowerBound(n1,n2,durationSum/capacity,g); 17

} 18

} 19

} 20

} 21

20

t is not before the start time of the subproject, and t+δ is not after the end time of the subproject). These pro-
files are illustrated in Figure 2-4.

MPC2 is based on the fact that two subprojects A and B cannot overlap (with A ending before B) if the fol-
lowing conditions hold for any value δ, and the subprojects require the same unit-capacity resource:

1. rs(tα=δ,B)+ri(δ,A)>δ

2. ∀τ, 0≤τ≤δ [rs(tα=τ,B)+re(tω=τ,A) > τ]

The first condition is that the overlap of the first δ time-units of subproject B with any interval of the same
length in subproject A will require a total resource capacity greater than the δ available. Thus any legal over-
lap must be less than δ time-units. In our algorithm, the first step is to find the minimum value δ for which
this condition holds.

The second condition is that any overlap of less than δ time-units requires more resource capacity than is
available (by considering resource usage for the first τ time-units of subproject B and the last τ time-units of
A). An example of these calculations is illustrated in Figure 2-5 and Figure 2-6.

Because they are lower-bounds, there are many ways to compute the resource-profiles, and a tradeoff exists
between tight lower-bounds, and lower-bounds that can be computed and manipulated efficiently. I have
used algorithms based on Piecewise Linear Trees, a simple adaptation of the Interval Tree data structure
described in Chapter Three. Briefly, a Piecewise Linear Tree is the integral of a corresponding interval tree:
i.e., it computes the cumulative height (as x increases) of a set of intervals over the x axis. An interval can be
inserted in the tree in logarithmic time.

Testing the first condition requires the start-profile and end-profile only. The start-profile is easily con-
structed as a PLT by inserting, for each task, an interval of resource usage beginning at the latest start time
(relative to the start of the subproject). The end-profile is computed as the start-profile of a “reversed” ver-
sion of the original subproject. The two PLTs with N intervals can be summed in O(N log N) time by
repeated insertion. To test condition 1 above, the summed PLT can be searched in O(N) time to determine
whether it crosses the y=x diagnonal.

Figure 2-3. Two subprojects compete for a resource.

Subprojects Light and Dark are shown. Each is a chain of four-day
tasks. Adjacent tasks may be separated by a gap of at most three days.
Because Light and Dark each require the resource for at least four out
of any seven days, they cannot overlap by seven days or more.

<=3

<=3 <=3

<=3

21

Figure 2-4. Resource Usage Profiles for Isomorphic Subprojects A and B.

Two subprojects are shown at the top of the figure. In subsequent fig-
ures, I examine whether they can overlap. The three graphs are (top to
bottom), the start-profile, end-profile and intermediate-profile for the
two subprojects. Because the two subprojects are identical, their
resource profiles are identical. The dashed line in each profile is a refer-
ence point, corresponding to constant resource usage. Note that tα mea-

sures time from the beginning of the subproject, while tω measures time

from the end of the subproject.

<= 2 <= 4
A

<= 2 <= 4
B

rs(tα,A)=rs(tα,B)

re(tω,A)=re(tω,B)

ri(δ,A)=ri(δ,B)

tα

tω

δ

22

Figure 2-5. Calculation of Upper-Bound Permitted Overlap between A and B.

This figure explores the question: if Subproject A begins before B, but
they overlap by at least δ time units, will they exceed resource capacity?
This can be answered for each value of δ, by adding rs(ta=δ,B) to

ri(δ,A). The greatest value of δ for which rs(tα=δ,B)+ri(δ,A) does not

exceed δ (for unit capacity resources) is an upper-bound on the possible
overlap between A and B. In this case, the upper-bound is δ≤6.

<= 2 <= 4

rs(tα,B)

ri(δ,A)

rs(tα=δ,B) + ri(δ,A)

tα

δ

tα=δ

23

Figure 2-6. Exact Check of Permitted Overlap between A and B.

This figure explores a question related to the one explored in the previ-
ous figure: if Subproject A begins before B, but they overlap by exactly δ
time units, will they exceed resource capacity? This can be answered for
each value of δ, by adding rs(tα=δ,B) to re(tω=δ,A). Legal values for δ
must satisfy the constraint rs(tα=δ,B)+re(tω=δ,A) ≤ δ (for unit capacity

resources). In this case, values 0≤δ≤6 violate the constraint. Together
with the result in the previous figure, we see that no value of δ satisfies
the constraints, and thus A and B cannot overlap.

<= 2 <= 4

rs(tα,B)

re(tω,A)

rs(tα,A) + re(tω,B)

tα

tω

tα=tω

24

Testing the second condition is more complex because the intermediate-profile is more difficult to construct.
I have developed a construction algorithm that operates on a graph representing the subprojects. Arcs in the
graph represent either task executions, or gaps between tasks. An arc is present between two tasks only if
one must precede the other. The resulting graph is directed and acyclic. Rather than consider all possible
schedules for the subproject, in computing the lower-bound, the algorithm restricts consideration to the set
of simple paths (i.e., directed and non-looping paths) through this directed graph. Resource usage along any
simple path is a lower-bound on the resource usage for a complete subproject schedule.

If we plotted the lower-bound resource profile for each simple path through the graph, the result would be as
depicted in Figure 2-7. For singly-connected graphs (such as in the figure) with N nodes, there are N simple
paths, each of length less than N. The calculation of the intermediate profile can be done by creating a path
profile for each path, and then computing the minimum by sweeping across the path profiles in parallel,
looking for intersections and updating the minimum of all the profiles. The minimum of all the path profiles
is the intermediate profile.

This latter step of combining path profiles is an instance of the computational geometry problem of finding
the “lower envelope” of a set of functions [19, pp. 355 ff.]. From a theorem by Sharir and Agarwal [116, p.
21], we know that there are at most O(N2α(N)) intersections in the lower envelope of our N N-segment path
profiles, where α(N) is the extremely slow-growing inverse of Ackerman’s function (for all practical pur-
poses, this factor is a constant). At each intersection, we must do some updating to maintain the minimum
profile at each intersection: this adds a “sorting” factor of O(log(N)) (again following a theorem of Sharir
and Agarwal [116, p. 136]). The time complexity of this step for singly-connected graphs is thus polyno-
mial: specifically, the complexity is in O(N2α(N)log(N)). Once we have constructed the intermediate profile,
it may have O(N2α(N)) segments: to add it to the start profile of another subproject has time complexity in
O(N2α(N) log(Nα(N))), which is the time complexity of checking for an MPC2 ordering constraint between
two subprojects with at most N tasks each. Recall that N is the number of tasks in the subproject: this is
likely to be much smaller than the number of tasks in the project.

There is one major open problem with this approach. How do you choose subprojects or other aggregations
of tasks? In some cases, we may be able to use a task hierarchy specified by the user (as in a task-decompo-
sition or hierarchical planner). Our motivation for this approach is in astronomy applications, where the
“observing programs” of different groups of astronomers are natural subprojects that do not require a gen-
eral theory of abstraction and aggregation. In satellite scheduling, a similar subproject type is known as a
“periodic task” [100].

At the end of this chapter, I describe experiments that validate the effectiveness of MPC2 in finding new pre-
cedence constraints between subprojects in a test suite of problems.

2.5. MPC Extensions

The basic MPC techniques can be extended in a number of additional ways. Three straightforward exten-
sions are sketched in this section.

2.5.1. Handling other Temporal Constraints

As described, the MPC technique combines resource constraints with precedence constraints to derive
tighter temporal constraints. By examining the set of tasks Y such that X precedes Y, and Y precedes Z, MPC1
can establish a stronger constraint between X and Z. Strict precedence is a convenient simple case: it allows
us to determine that the task Y, with duration D, will use D units of a resource between the time points X
and Z.

25

Figure 2-7. Lower-bound on simple paths through subproject constraint graph.

Dashed portions of the graphs are parts of the lower-bound intermedi-
ate-profile.

<= 2 <= 4

t

r

t

r

t

r

t

r

t

r

A

B C

D E

F

ABCDEF

BCDEF

CDEF

DEF

EF

t

r
min

26

But if other constraints allow us to determine that at least D’ units of Y occur between times X and Z, similar
reasoning can be used. I have not explored this possibility, but Figure 2-8 depicts an example of the compu-
tation involved.

2.5.2. Handling Multiple Resources

For clarity of presentation, my description of the MPC approach has assumed a single resource. The exten-
sion to multiple resources is fairly straightforward. For example, in Listing 2-2, the loop over intermediate
tasks must be enclosed in a loop over resources. For each resource, only intermediate tasks which use the
resource are considered when accumulating resource usage. If an individual task requires multiple resources,
it will be counted in several of the resource loops.

2.5.3. Handling Attribute-Based Resource Selection

Finally, a common problem in large-scale scheduling problems is reasoning about polymorphous resources:
i.e., where similar resources are grouped into pools, and a task’s resource constraints specify which pools
can be drawn upon to provide a resource. For example, this problem arises in airline crew scheduling and
maintenance, where pilots and engineers must be certified for the safe operation of individual types of equip-
ment.

Figure 2-9 illustrates a simple example from the construction of a building. Among the ten construction
workers, five are carpenters, with three of those certified as master carpenters. Another two construction
workers are electricians. While some tasks can be done by any worker, others require a carpenter: a few tasks
might specifically require a master carpenter.

The basic MPC technique generalizes nicely to the problem of handling resource pools, although resource
usage information must be propagated through the hierarchy. For example, a task requiring seven construc-
tion workers leaves at most three carpenters free. Similarly, a task requiring three carpenters leaves at most
seven construction workers free.

The MPC1 algorithm extends to hierarchical resource pools by examining the entire resource hierarchy for
every pair of events X and Y. For each pair and resource type, the resource requirements are computed for the
set of tasks S={Z:precedes(X,Z) ^ precedes(Z,Y)}, which is then used to provide a possibly tighter constraint
between X and Y.

2.6. Evaluation

I have evaluated MPC1 and MPC2 on two related test suites of scheduling problems.

It can be difficult to separate the effectiveness of preprocessing algorithms from the search algorithms that
follow them. Certain discovered constraints may yield no benefit in certain algorithms, or even slow down
the algorithm. For example, a preprocessing algorithm may be geared to discover a certain type of con-
straint, but this constraint may only be valuable if it is used in a forward-checking phase of the search algo-
rithm (in other words, tested at each search tree node to determine if no feasible solutions exist below that
node). As another example, stochastic search algorithms are better able to exploit reduced domain sizes than
new precedence constraints. On the other hand, precedence constraints are more crucial to certain backtrack-
ing search algorithms which search over the space of partial orders.

Accordingly, I have used a factored benchmark approach. I first quantify the effects of the preprocessing
algorithm in terms of a search space parameter (number of constraints, size of domains, etc.), and then run
separate tests to see how the preprocessing algorithm improves search efficiency. By analyzing both the
search space parameters and search efficiency for different problem parameters, we can better understand

27

Figure 2-8. MPC with non-precedence constraints.

In this example, we have that X precedes Z, X precedes e, s precedes Z,
and of course, s precedes e, where s and e are the start and end of task Y.
Reasoning from the four cases for the ordering of X, s, e, and Z, we see
that at least D’=min(d1, d2, d, d1 + d2 - d) units of resource are used
by task Y between X and Z.

X

Z

s eTask Y

X + d1 <= e, d1 >= 0
s + d2 <= Z, d2 >= 0
s + d <= e

X

Z

s eTask Y

X

Z

s eTask Y

X

Z

s eTask Y

d

d2

d1

d1+d2 - dd1

d2d

Constraints:

28

the mechanism by which the preprocessing algorithm increases search efficiency, and how this effect varies
for different problem types. When deciding to use a preprocessing technique on a new problem class with a
new search algorithm, one can separately decide whether the problem class is suitable for the preprocessing
algorithm, and whether the output of the preprocessor will influence the particular search algorithm.

MPC1 was evaluated by generating random constraint graphs over tasks which all required a single unit-
capacity resource. For each such graph, there is at least one schedule over the tasks which satisfied the con-
straints: this is called the nominal schedule and it is generated first so as to guarantee feasibility. The test
problems varied along three parameters:

• resource utilization, varying from 0 to 1, indicates the proportion of time the resource is used in a feasible
schedule. Higher resource utilization should increase the effectiveness of MPC1, as there is more
resource contention in the problem. Resource utilization was varied by introducing random-duration gaps
between tasks in the nominal schedule.

• constraint density, varying from 0 to 1, indicates the probability that a precedence constraint consistent
with the nominal schedule would be present in the constraint graph.

• number of tasks in the schedule. Tasks have a mean duration of 10.0 time units, and resource utilization is
varied by altering the mean duration of the inter-task gaps (for utilization of 0.67, the inter-task gaps are
chosen to have mean duration of 5.0, half the mean duration of the tasks).

Because no problem test suite is perfect, I have varied the test suite parameters in my experiments, so that
their effect on results and conclusions might be seen more clearly.

Experimental results for MPC1 are summarized in Table 2-3. The table presents data on the average “search
tree size” under varying test problem parameters and preprocessing algorithms. The search tree size is calcu-
lated as the product of the domain size of each task in the problem (domain size is the difference between
latest start time and earliest start time for a task in the problem). The table shows the base 2 logarithm of
search tree size, which we would expect to be roughly proportional to the log of search cost, although this
will depend on the number of acceptable solutions, and the precise search algorithm being used. Halving the

Figure 2-9. Hierarchy of available resources.

The hierarchy includes ten construction workers, of whom five are car-
penters, with three of those certified as master carpenters. Another two
construction workers are electricians. Note that three remaining con-
struction workers are undifferentiated.

10

5

3

2

Construction Workers

Carpenters

Electricians

Master Carpenters

29

log search tree size (as often occurs in this table) would correspond to, for example, reducing the domain
size for each task to the square root of its original size, or reducing the depth of the search tree by a factor of
two (logarithm of original search tree size = log(bd) = 2 log(bd/2) = 2 log ((b1/2)d).

number of tasks

30 40 50
constraint
density = .2 Start DMP MPC1 Start DMP MPC1 Start DMP MPC1

resource
utilization

.50 246.2 229.0 220.7 346.8 325.9 312.5 451.9 427.2 407.0

.75 240.6 218.2 200.2 341.4 313.9 283.7 443.8 412.1 368.0

.90 246.8 221.8 197.8 348.5 318.6 279.1 454.2 418.5 360.7

1.00 250.9 226.5 201.3 352.2 320.2 277.5 458.4 421.5 359.3
constraint
density = .5

resource
utilization

.50 245.5 211.5 202.3 345.9 308.9 294.3 451.2 404.7 386.8

.75 241.4 196.2 169.3 341.1 284.0 245.1 444.1 374.7 323.7

.90 247.0 193.2 149.8 348.4 281.4 217.5 453.2 374.2 290.4

1.00 250.1 195.6 145.0 353.1 286.5 211.8 460.7 375.6 279.8
constraint
density = .8

resource
utilization

.50 246.1 187.6 184.0 347.1 278.1 272.9 450.9 370.4 363.5

.75 242.2 162.8 150.3 341.2 238.7 221.1 444.3 322.8 300.2

.90 247.5 149.1 124.8 348.7 216.9 186.1 454.9 301.5 256.8

1.00 250.3 144.2 116.9 353.0 215.6 176.8 459.7 305.8 246.6

Table 2-3. MPC1 performance: reduction in log(search tree size).

The values in this table are the base 2 logarithm of search tree size for
the original problem (“start”), the output of DMP preprocessing
(“DMP”), and the output of 3 iterations of MPC1 and DMP (“MPC1”).
Each table entry is a mean over 60 experiments. Three subtables show
results for varying constraint densities (.2, .5, and .8). The table shows
that MPC1’s benefits improve as resource utilization increases.

30

The results show that a significant reduction in search tree size is attributable to DMP preprocessing of tem-
poral constraints. When MPC1 is run, it generates additional temporal constraints by analyzing resource
capacity: this enables a subsequent run of DMP to generate even tighter constraints. In these tests, the algo-
rithms alternate, with MPC1 run three times in the alternating sequence, and DMP starting and finishing the
sequence.

As the table shows, MPC1, when combined with DMP, reduces search tree size considerably. This effect is
greatest when resource utilization is high and there is much resource contention.

MPC2 was evaluated using pairs of subprojects. Each subproject was generated using the same mechanism
as for generating problems for MPC1. However, the order of tasks was constrained to be identical to the
nominal schedule, and each N-task subproject had N-1 internal constraints, each reflecting a maximum gap
permitted between successive tasks.

The experimental question is how often does MPC2 find a constraint between pairs of subprojects, and how
does this effect vary with resource utilization (the size of gaps), and with subproject length (the number of
tasks). Experimental results are summarized in Table 2-4. The table shows that for resource utilization over

.5, we are quite likely to find a constraint between two randomly generated subprojects. The probabilities
imply that a large proportion of such subprojects will have order constraints that are a consequence of their
internal resource requirements. The effect diminishes as subproject length increases, essentially because the
odds of finding a sequence of long gaps increases in a longer subproject. Nonetheless, the benefits of finding
such a constraint are correspondingly greater for longer subprojects.

These results show that the MPC1 algorithm can sharply reduce domain sizes, and thus search tree sizes, and
that the MPC2 algorithm can discover implicit ordering constraints by combining resource capacity and tem-
poral constraints. The overall payoff of better preprocessing and additional constraints depends on the search

number of tasks in each subproject

2 4 8

resource

utilization

.1 .000 (100) .000 (100) .000 (100)

.3 .435 (1200) .107 (400) .000 (100)

.5 .893 (1400) .779 (1600) .638 (1500)

.7 .995 (500) .995 (500) .996 (400)

.9 1.000 (100) 1.000 (100) 1.000 (100)

Table 2-4. MPC2 performance: probability of discovering a constraint.

This table gives the probability of finding a precedence constraint
between a pair of subprojects using the MPC2 algorithm. Experiments
were run (in batches of 100) until the 95% confidence interval around
the estimated probability was +/- .025 (sample sizes are shown in
parentheses).

31

algorithm used. As a “vanilla” test vehicle, I have used clp(FD), a constraint-logic programming system
developed at INRIA [28, 38]. It implements a simple backtracking search, together with forward-checking,
and has been applied to solve job-shop scheduling programs. The use of an off-the-shelf search algorithm
limits the risk of confounding these results with implementation quirks.

Results for MPC2 are shown in Table 2-5. As the table shows, the MPC2 advantage is negligible in small
problems (60 ms versus 30+18 ms in the upper-left-hand cell) but up to a factor of 10 in larger problems
(3658 ms versus 376+47 ms in the lower-right-hand cell).

Results for MPC1 are shown in Table 2-6. The table shows that MPC1’s advantage is in large problems
(here, 50 tasks), and when the problem is otherwise relatively underconstrained (constraint density .2 or .5).
In these cases, MPC1 provides a factor of 2 speed-up, even on these relatively easy problems..

2.7. Related Work

In addition to the research mentioned elsewhere in the chapter, there are a few related research efforts worth
noting.

Several AI planning & scheduling researchers have attempted to exploit resource constraints. For example,
Howard A. Beck [9] has developed the habograph, an eponymous data structure for monitoring resource
capacity constraints. His concern is to detect constraint violations during search (based on the earliest start,
latest end, and capacity requirements of a set of tasks), or to detect infeasible problems which will need to be
relaxed before solving. The actual calculation performed by the habograph can also be accomplished using
the compiled data structures described in Chapter 3 of this dissertation.

Several researchers in constraint satisfaction and O.R. have examined resource constraints. Carlier & Pinson
[24] developed several innovative techniques for analyzing resource capacity: for example, they identify
tasks (“steps” in the job-shop jargon) which must occur before or after all other tasks in a job-shop schedul-

number of tasks in each subproject

8 16 32

CLP with
MPC2

Overhead CLP with
MPC2

Overhead CLP with
MPC2

Overhead

resource

utilization

.5 64 30 (18) 439 100 (26) 5740 378 (50)

.7 60 30 (18) 368 100 (26) 4338 376 (49)

.9 55 30 (18) 314 100 (26) 3658 376 (47)

Table 2-5. MPC2 performance: search costs with MPC2-discovered constraint.

This table gives the average search cost (in milliseconds) for a
clp(FD) scheduling algorithm, with and without MPC2 prepro-
cessing. Also shown are the overhead costs for the MPC2 pre-
processing step. 1000 experiments were run for each of the
experimental conditions.

32

ing problem, using a similar mix of resource capacity and temporal constraints as I have exploited here. A
task with an early due-date, for example, might not be feasible if it starts after another task that requires
access to the same exclusive resource. In other words, their techniques find necessary precedence constraints

number of tasks

30 40 50
constraint
density = .2 DMP MPC1 Over-

head
DMP MPC1 Over-

head
DMP MPC1 Over-

head

resource
utilization

.50 178 116 23 398 227 63 790 381 113

.75 184 127 23 406 227 63 828 395 113

.90 180 122 23 408 236 63 826 395 112

1.00 170 110 24 391 220 63 797 373 115
constraint density = .5

resource
utilization

.50 128 86 27 296 141 71 606 227 127

.75 137 84 27 318 142 71 527 229 127

.90 130 84 28 297 141 71 548 223 128

1.00 138 73 28 306 144 71 564 220 128
constraint density = .8

resource
utilization

.50 92 78 28 194 151 72 357 233 129

.75 98 77 28 193 142 72 319 228 130

.90 94 79 28 204 150 72 323 227 130

1.00 98 80 28 182 146 72 324 218 130

Table 2-6. MPC1 performance: search costs with MPC1 preprocessing.

The values in this table are search times after varying preprocessing algorithms
have been applied. Search costs (in milliseconds) are shown for the output of
DMP preprocessing (“DMP”), and the output of 3 iterations of MPC1 and DMP
(“MPC1”). Each table entry is a mean over 60 experiments. A third column
(“Overhead”) shows the cost of the additional preprocessing for MPC1, before
search begins. Three subtables show results for varying constraint densities (.2, .5,
and .8).

33

between tasks that require the same unit-capacity resource. Several constraint logic programming research-
ers [6] have also examined such disjunctive constraints in job-shop scheduling problems.

The classic O.R. approaches to scheduling and production planning have, of course, studied resource con-
straints. For example, Morton and Pentico’s book [87] describes heuristic approaches to production planning
and project management. But, tellingly, they do not mention resource capacity until p. 457 [emphasis
added]: “So far we have considered only the important special case of project scheduling in which: (a)
Activities need not compete for limited resources...” One major subfield of O.R. is concerned with “bottle-
neck dynamics”, the identification and amelioration of resource bottlenecks [48]. As these researchers
wisely point out, one can sometimes change resource capacity by renting equipment, paying overtime, or
modifying processes: these are beyond the scope of the work presented here.

2.8. Summary

Reasoning about resource constraints appears to be far more difficult than reasoning about temporal con-
straints. Temporal constraints conjunctively describe a convex region. But resource constraints are disjunc-
tive: the generic resource constraint dictates that if two tasks X and Y share a unit-capacity resource, then
either X precedes Y or Y precedes X.

One lesson of computer science is that disjunction breeds complexity. For example, the problem of 3-satisfi-
ability is far harder than 2-satisfiability simply because the former involves disjunction: the 3-clause

 is equivalent to , while the 2-clause rewrites to . After
instantiating X in the 2-SAT clause, the assignment for the other variable is either forced or inconsequential:
this leads to a linear-time algorithm for solving 2-SAT problems. In contrast, 3-SAT appears to require a
branching search through a disjunctive tree of variable assignments, as we deal with the disjunctive conse-
quences of our choices in search.

While disjunction is generally a complication, as in the 3-satisfiability example, the results in this chapter
demonstrate that complex reasoning about resource constraints is far from impossible, and can be quite fruit-
ful even with an investment of polynomial-time computation. The MPC techniques described here can be
viewed as grouping the disjunctive constraints into bundles that can be treated conjunctively. An example
conjunctive constraint that results is of the form: regardless of whether X precedes Y or Y precedes X, we
know that X and Y will require so much resource capacity in a specified time interval.

In experimental tests, I demonstrated how MPC1 and MPC2 operate by identifying additional constraints
and shrinking the size of the state-space. Even in small problems, these advantages result in speedups by fac-
tors of 2 to 10 in some cases. For larger problems, where the cost of preprocessing is easier to overcome, the
additional constraint information uncovered by MPC should be even more valuable.

I expect that future work will reveal a number of improvements to MPC, including better lower bounds for
the constraint techniques I have proposed, as well as better techniques for finding and exploiting tractable
conjunctions of disjunctive constraints. The space of conjunctions over constraints is quite large of course (a
powerset), but I expect that algorithm designers will be able to identify natural and tractable conjunctions of
constraints.

X Y Z∨ ∨() X¬ Y Z∨⇒() X Y∨() X¬ Y⇒()

34

35

3 State Generation using Compiled Interval
Data Structures

Search is ubiquitous in artificial intelligence, and the
performance of most AI systems is determined by the
complexity of a search algorithm in their inner loops.

------------------------Richard E. Korf

Search algorithms are omnipotent but at the expense of being omnivorous: powerful generality comes at the
price of being computationally intensive. If, as Korf suggests, search algorithms dominate the performance
of most AI systems, search algorithms are in turn dominated by the cost of generating and evaluating states.

Scheduling problems suffer most because they have very large state descriptions, in contrast to textbook
search applications such as puzzles or board games (a chess position is described by slightly more than 32
variables, one for each piece). In a scheduling search application, it can be extremely costly to generate one
state from its parent in the search tree, particularly if heuristic functions must be re-evaluated over hundreds
or thousands of variables in the state description.

Yet the improvement of state-generation is a non-issue from the standpoint of theoretical computer science.
State generation is rarely more expensive than polynomial in the branching factor b, while search is expo-
nential time. For example, if c is a constant, (bd states) x (bc computations per state) is still in O(bd). Despite
this, no practitioner would turn down a constant number of levels of search for free: and in fact, we can use
improvements to state-generation to reach deeper levels of search in the same amount of time (in this exam-
ple, up to c levels deeper). We also note that searching deeper by generating states faster has been one major
focus in computer chess research, where custom hardware has been used to pipeline or parallelize the pro-
cess of generating and evaluating board positions. Clever engineering of state generation has also proved
crucial in successes of CSP research, such as the solution to the million Queens problem1 and the KTS mili-
tary deployment scheduler.2

This chapter describes a novel approach to building rapid state generators for scheduling applications. I have
demonstrated that simple compilation techniques can be designed to produce efficient and bug-free state
generator code from formal specifications. The compilation is easily accomplished by hand for a specific
application, but automated compilation is a requirement to build practical yet general-purpose scheduling
systems. As I explain in this chapter, the underlying technology suggests techniques to build incremental

1. Andrew Phillips, then of NASA Ames Research Center, personal communication.

2. Douglas Smith, Kestrel Institute, personal communication.

36

state-generators for search algorithms (or equivalently, incremental constraint checkers for manual schedule
editors) from formal specifications of the constraints and heuristics in use.

As is the case with preprocessing, rapid state generation is an improvement that is visible even to humans
who interact with a manual scheduling system, as they must wait for constraint propagations between man-
ual schedule changes. The problem is even more vital for automated schedulers, which generate many more
states in their search for a good schedule. Finally, rapid state generation is a prerequisite to the use of statis-
tical or machine learning techniques in scheduling: millions of partial schedules might have to be sampled
before reliable search control information can be learned. The slow state-generation techniques available
today make statistical learning techniques infeasible for complex constraint-satisfaction problems. Perhaps
this explains why comparatively little progress has been made in learning for complex scheduling or con-
straint-satisfaction applications.

The chapter borrows from techniques in both computational geometry and programming-language seman-
tics. While the work presented here is only a first step, I feel the techniques developed in these areas could
have broad practical impact on AI scheduling and planning applications. Much of scheduling is concerned
with intersection, ordering and other fundamentally geometric concepts: algorithms and data structures from
computational geometry have proven very useful in DTS and SchedKit (recall that computational geometry
data structures were also applied in Chapter Two). In addition, schedules and plans are strikingly similar to
computer programs: simple compiler theory techniques originally developed for incremental editing and
checking computer programs have given DTS and SchedKit a fast state-generation capability that is vital for
both automated and manual scheduling.

3.1. Structure of the Chapter

Sections 3.2 and 3.3 give background information on the state generation problem, and on the interval tree
data structure. In Section 3.4, I show how interval trees can be used to develop efficient state generators. The
interval tree computations can be specified formally using the notation of attribute grammars, and Section
3.5 gives brief background information on attribute grammars. In Section 3.6, I describe how attribute gram-
mar specifications of heuristics and constraints can be compiled into augmented interval tree data structures.
In Section 3.7, I present a number of example state-generators developed in this way. The chapter concludes
with an evaluation of the compilation approach, and a discussion of related work.

3.2. Background: State Generation

In scheduling, the major task involved in generating states is the re-evaluation of heuristic functions and con-
straint checks. I focus first on the issue of heuristic functions, returning to the checking of state variable con-
straints later in the chapter.

A heuristic function h is simply a function of a state. For example, a heuristic function that recommends the
next task to assign is a function from states to tasks. As state S is modified to S’ by applying operator O, we
need to compute h(S’) quickly, using h(S), S and O if possible. (This is an instance of the general problem of
incremental computation, as discussed in the Related Work section below.)

For example, consider the following heuristic:

SIMPLE-MOST-CONSTRAINING: The task participating in the maximum number of
constraints with unassigned tasks.

One approach to computing this heuristic incrementally is to maintain a heap of tasks, ordered by the num-
ber of constraints with unassigned tasks. This heap is maintained separately for each state, and includes only
those tasks that are unassigned in that state. We also use a global constraint graph, where the nodes are tasks,

37

and two nodes are connected by an edge if the two tasks participate in a constraint. When a task is assigned,
we remove it from the heap, and decrement the heap-key of each of its graph neighbors.

SIMPLE-MOST-CONSTRAINING is a function of the set of unassigned tasks in a state. Its input domain is lim-
ited, and the inputs change slowly from state to state. The more expensive heuristics are those that are func-
tions of the partial schedule represented by the state: SIMPLE-MINIMUM-DOMAIN is an example.

SIMPLE-MINIMUM-DOMAIN: The task with the smallest range of legal start times.
A legal start time is one that does not conflict with any constraints or with
assigned values for other variables.

The MIN-CONFLICTS heuristic for value-selection is another example:

MIN-CONFLICTS: For the given task, the start-time which conflicts with the mini-
mum number of constraints.

I will describe a tree data structure to rapidly calculate and incrementally maintain the MIN-CONFLICTS heu-
ristic. This kind of data structure will be used throughout the chapter as the basis for state-generation.
Figure 3-1 depicts a tree structure imposed over the set of overlapping constraints on a single task. Each con-
straint might be the result of a simple precedence constraint between tasks. In the center of the diagram is a
bar-chart indicating the number of constraints stacked over each interval. A new interval is begun whenever
a constraint begins or ends. An “interval tree” data structure is imposed over the interval endpoints: an inter-
val tree is simply a balanced binary tree, with each internal node representing the interval spanned by its
extreme left and right descendants. I will describe the interval data structure in the next section

Figure 3-1. Sketch of Data Structure for Computing Min-Conflicts Heuristic.

Time

Conflicts w/

of conflicts

Tree structure
over interval
endpoints

constraints

38

Researchers in computational geometry developed the interval tree to deal with a variety of intersection
problems [29, 102]. It is straightforward to “augment” an interval tree manually to maintain the information
required to compute the Min-Conflicts or other simple heuristics. The notion of augmentation is thoroughly
described by Cormen, Leiserson and Rivest [29]. In brief, augmenting a data structure involves maintaining
additional information at each node, and updating that information when the tree is modified. An example
would be augmenting a balanced binary tree to store the size of each subtree: the size can easily be defined
for leaf nodes, defined for the parent of two subtrees, and updated when the tree is rebalanced or nodes are
inserted or deleted. Given this augmentation, we can now perform size-related queries on the tree. One
example is querying the “rank” of a datum: how many entries are to the left of a given datum in the tree’s
inorder traversal?

The DTS system which I developed several years ago used augmented interval tree data structures to effi-
ciently compute a number of such heuristics and constraint-checks. This chapter describes and generalizes
these data structures.

A naive implementation of min-conflicts is an O(R T) scan over R resources and T time points after sorting
the constraints. The tree data structure for this problem (formalized in a later section) instead permits an
O(1) operation to find the min-conflicts time, and O(log C) time to post or remove the C th constraint. Simi-
lar speedups are possible for other constraints and heuristics in the literature. For example, Sadeh [114]
describes algorithms for calculating the “texture” heuristics that he developed with his colleagues. The algo-
rithms presented by Sadeh involve explicit scans over resources and times. But an augmented interval tree
can again provide O(1) heuristic evaluation functions and O(log C) update costs for the C th constraint.

In each such case, the augmentations of the interval tree are different. Efficient calculation of the augmenta-
tions requires just enough code optimization to require a trained programmer, and even so, the coding pro-
cess is error-prone. If several heuristics and constraints are to be calculated, they can in some cases be folded
into a single data structure. This would be error-prone if done by hand.

The challenge, as I see it, is to automate this process so that a user may specify a heuristic at run-time in a
formal language (or with a graphical user interface), and have a compiler produce an efficient state-generator
that relies on augmented interval trees and other data structures as necessary. Such a capability would
streamline the process of adapting schedulers or planners to new application domains. In a later subsection, I
explain how to apply the technology of attribute grammars to this compilation problem. Attribute grammars
are a particularly well-understood portion of a general theory of incremental graph evaluation [59]. In
essence, the techniques I describe here use attribute grammars for formalization, and interval trees for their
efficient treatment of ordered attribute evaluations and particularly, associative functions such as those that
arise in state generation.

Because this chapter involves techniques from two disparate fields, I have simply interleaved the discussion,
as necessary, with background sections on Interval Trees and Attribute Grammars.

3.3. Background: Interval Trees

An interval tree [102, p. 352] supports queries over a set of intervals. In our application, intervals will repre-
sent the time assignment for a task, illegal time periods prohibited by a constraint, resource usage over an
interval of time, etc.

An interval i is defined as a real-valued start-point (i.l) and end-point (i.r), together with an arbitrary key
or datum (i.k). We define the sets L(I), R(I) and K(I) as the start-points, end-points and keys of a set of
intervals I. An interval tree supports natural queries on a set I, such as the following:

• Which intervals in I are contained in the interval [l, r]?
(One interval [a.l,a.r] is contained in another [b.l,b.r] iff b.l < a.l < a.r < b.r.)

39

• How many intervals in I overlap at the point x?
(An interval [l, r] overlaps the point x iff l < x < r.)

Other queries manipulate the keys associated with the intervals. For example, if f () is an associative function
of a set of keys, then it is natural to ask for f (keys(I)), where I is the set of intervals overlapping a point.

An interval tree is a binary search tree over the endpoints of a set of intervals I.1 (I assume, for simplicity,
that the endpoints are unique.) Define the list of endpoints E(I) as the sorted members of the union of sets
{i.l, i.r} over all intervals i. It is convenient to number the elements of E(I) as e1, ... en. Each leaf corre-
sponds to an element of E(I), and the inorder traversal of the tree’s leaves recreates E(I). We also assume
that each leaf is labeled as a right or left endpoint.

Each interior node represents the interval [l, r] where l is the leftmost descendant in the subtree, and r is the
rightmost descendant. Augmentations of the basic interval tree are used to compute properties of an interval.
For example, each node [l, r] can maintain the number of intervals that intersect the time r (i.e., the number
of intervals i such that r precedes i.r in the ordering E(I) but r does not precede i.l in the ordering E(I)).
Call this function Balance(e1, r): it is the basis for computing the MIN-CONFLICTS heuristic.

Note that we can rewrite Balance() using the following recursive definition:

Note that the function decomposes into an associative function (addition) of individual terms (+1 or -1) for
each endpoint. This suggests that a tree structure can be used to associate the terms into subtrees, and main-
tain Balance(l,r) for each subtree. Any query for Balance(ei,ej) can then be computed by adding the values
for at most O(log N) subtrees, if the tree has N leaves. (If the tree is balanced, the nodes between any pair ei
and ej are entirely contained in a set of O(log N) subtrees.)

As in other tree data structures, various balancing mechanisms (splaying, red-black markers, etc.) can be
used to ensure that the insertion, deletion and membership operations can be accomplished within logarith-
mic time.

Finally, the “X-axis” in the interval tree need not be time, although it is in all of my applications to date. It
can more generally be any total-ordering criterion. For example, if we are searching through the possible
total orders on a single machine in a job-shop problem, we can construct an interval tree for each total order.
A properly augmented tree could compute machine states and setup costs on the fly as jobs are inserted and
deleted in the total order.

For non-total-orders, both the specification and computation of functions such as Balance becomes more
complicated. However, there is significant related work to draw on in elaborating that extension of these

1. Some textbook descriptions of interval trees store one interval (i.e., two endpoints) per node. I have found
it useful to store one interval endpoint per node instead.

Balance(ei,ej) = 0 if i > j.

= 1 if i=j and
ej ∈ L(I).

= -1 if i=j and
ej ∈ R(I).

= Balance(ei,ej-1) +
Balance(ei,ej)

otherwise

40

techniques: I describe some of this related work at the end of the chapter, and until then, focus entirely on
total orders.

3.4. State-Generators using Interval Trees

In this section, I describe how to represent several heuristics and constraints using interval trees. The section
focuses on intuitive or geometric descriptions of how the interval trees would be used. In a later section, I
give formal specifications for the tree structures using attribute grammars.

3.4.1. Representing Heuristic Functions

I will use two examples to clarify the use of interval trees to represent heuristics.

The first example is the min-conflicts heuristic, popularized in papers by Minton and his colleagues [83]. We
seek a data structure that supports a query for the time point that is “in conflict” with as few constraints as
possible. By maintaining such a data structure for each task, we can easily find the task that is in the mini-
mum number of conflicts with posted constraints.

In fact, the use of intervals helps to clarify the definition of the heuristic. The data structure maintains, for
each constraint on the task, one or more intervals representing the time periods excluded by the constraint.
The number of conflicts for a given time is simply the number of intervals stacked over that point. This is
one of the most basic queries on an interval tree.

A second example is the resource contention heuristic proposed by Muscettola and Smith [88, 89] and later
studied by Sadeh [114]. This heuristic identifies the time at which contention for a resource is heaviest. Con-
tention is defined by assuming a uniform probability distribution over the possible start times for the task.
(This is obviously a heuristic assumption, and not necessarily plausible: in fact, it is not even clear that the
probability distribution has a well-defined meaning.)

The simplest definition of resource contention is based on the following: if a task requires one resource unit
over a duration of d, and it can be scheduled at any time within an interval of length p, then it “contributes”
d/p to the contention on that resource throughout the length p interval. The contention over a set of tasks is
defined as the sum of their individually contributed contentions for the resource.1

This heuristic is easily implemented by maintaining an interval tree where each interval has a height d/p. The
time intervals of maximum contention are easily maintained for a given resource, and the resources can be
stored in a heap, keyed by contention, to maintain the bottleneck resource as scheduling progresses.

3.4.2. Representing Constraint Checks

In addition to heuristics, I have used interval trees to support incremental constraint checks, and I describe
three examples here.

The first example is the DefExec constraint that I developed while building DTS. The constraint is a
dynamic form of the preprocessing techniques described in Chapter Two. Consider the two tasks that are
depicted in Figure 3-2, along with their associated time bounds. The constraint is based on “definite-execu-
tion intervals” for each task. The definite-execution interval is bounded by the latest-start and earliest-finish
for the task. If this interval exists (i.e., latest-start precedes earliest-finish), the task will definitely be execut-

1. A slightly more subtle definition assumes uniform probability for the start-time of the task, subject to
constraints, and yields a trapezoidal or triangular contention function.

41

ing during the interval. Consequently, the sum of the definite-execution intervals must satisfy resource con-
straints.

This constraint check is easily implemented using interval trees. A single interval tree stores the definite-
execution interval for every task. The period during which the greatest number of such intervals overlaps
provides a lower-bound on the required resource capacity. If this exceeds the available capacity, the resource
constraint has been violated.

The second example is a more refined resource capacity constraint, using resource calendars. Assume that
resource availability varies over time. In this case, resource availability can be considered as negative inter-
vals (e.g., with a “height” of -k if k resource units are available), while resource usage is modeled as positive
intervals (height of +c if c units are used). Resource usage intervals are the definite-execution intervals. The
sum of the positive and negative intervals during any period cannot exceed zero, or the resource is oversub-
scribed.

A third example is provided by the Piecewise Linear Trees discussed in the previous chapter for use in the
MPC2 algorithm. In this case, we want not the number of intervals over a point, but the cumulative or prefix
sum of the intervals up to a point. Again, this is an extremely straightforward associative function that can be
represented by an augmented interval tree.

3.4.3. Generalization to State Variable Maintenance

Interestingly, the same tree structure that is so beneficial for maintaining heuristic information, and simple
constraints, can also be applied to maintain the value of state variables as tasks are inserted and removed
from the schedule. Figure 3-3 illustrates the concept for a simple integer-capacity state variable (an idealized
model of a battery).

In the example used here, a finite-state-machine characterizes the state variable’s behavior. To be efficient, it
must be possible to describe a sequence of transitions compactly using the state machine. In this case, the
state machine is restricted: it is a “jump down-counter” in the parlance of digital logic design [66]. Thus,
given a starting state, one can compute the updated state after an arbitrary sequence of transitions, if one

Figure 3-2. DefExec Constraint Example.
The figure shows time bounds on the start and finish of two tasks, Light and Dark.
The LatestStart of the Dark task precedes the EarliestFinish of the Light task, and
so it is certain that the two tasks will overlap for one time unit (grey vertical bar),
even though specific start and finish times have not yet been assigned. Thus if the
tasks require a common resource, two units of resource capacity will be required.

EarliestStart LatestStart

EarliestFinish LatestFinish

42

knows the number of down transitions since the last jump. In terms of the tree structure, there is a compact
way to encode the effect of the transitions in the interval represented by a subtree.

The problem of defining restricted languages that permit easy implementation in a data structure is the major
motivation for the use of attribute grammars in this chapter. Specifically, attribute grammars fulfill the need
to represent state variable behavior formally, and the grammars also provide a path to automating data struc-
ture design.

Figure 3-3. Maintaining State Information with an Augmented Interval Tree.
The figure illustrates a sequence of “fill” and “use” events on a battery with
capacity of 4 units. The finite state diagram for the battery is illustrated at lower
left: each state is an integer value for the remaining charge in the battery. A “fill”
event recharges the battery completely. The bar chart at the center of the diagram
illustrates the current battery level. To compute the bar chart, the tree structure
simply maintains two values for each subtree: a flag indicating whether a fill
event occured, and the number of use events after the last fill (if any).

Time

Use
Fill

Use

Fill
Use

Use
Use

Fill

Use

Use

Use

Use

Fill

0

1

2

3

4

43

Finally, I believe that characterizing the complexity of maintaining state information will be a valuable
research result in adding limited planning capabilities to scheduling systems. Formalization using state
machines and attribute grammars may be a first step toward that goal.

3.5. Background: Attribute Grammars

I will specify heuristics and constraint checks using attribute grammars, and these specifications will then be
compiled into runtime data structures. This section introduces attribute grammars.

Attribute grammars are one method for formalizing the semantics of compilers for programming languages.
They were first described by Knuth in 1968 [71], and are discussed in compiler design textbooks such as
those by Aho, Sethi and Ullman [3] and Waite [126]. Although they are sometimes used to formalize compi-
lation techniques in textbooks and dissertations, it appears that attribute grammars are little used in practice.

An attribute grammar is constructed from a language grammar (e.g., a BNF) by defining attributes at each
node in the parse tree (i.e., each left-hand-side of a grammar rule), and then specifying the dependencies
among attributes. The attributes X and Y of node Sched would be denoted as Sched.X and Sched.Y. The
attributes at a node can depend on its subtrees (synthesized attributes) or its parents and siblings (inherited
attributes).

A classic example of attribute grammars is parsing of binary numbers [14, 71, 107]. The basic grammar
rules are as follows (adapted from Bischoff’s tutorial [14]):

In this grammar, italicized items are non-terminals, and uppercase items are terminals. Individual bits have
value and scale attributes associated with them. The value of the bit is 2 raised to the power scale. Thus, in
the binary number 100.01, the scale for the leftmost 1 is 2, and for the rightmost 1 is -2. Figure 3-4 depicts
the attributed parse tree for this number. As the figure shows, bits are assembled into bitlists, such that the

bit : ZERO

bit.value = 0;

bit : ONE

bit.value = pow(2,bit.scale);

bitlist : bit

bitlist.value = bit.value;
bit.scale = bitlist.scale;
bitlist.length = 1;

bitlist : bitlist bit

bitlist.0.value = bitlist.1.value + bit.value;
bit.scale = bitlist.0.scale;
bitlist.1.scale = bitlist.0.scale + 1;
bitlist.0.length = bitlist.1.length + 1;

num : bitlist

num.value = bitlist.0.value;
bitlist.scale = 0;

num : bitlist DOT bitlist

num.value = bitlist.0.value + bitlist.1.value;
bitlist.0.scale = 0;
bitlist.1.scale = 0 -bitlist.1.length;

44

scale of a bitlist is the scale of its rightmost bit, the length of the bitlist is the number of contained bits, and
the value of the bitlist is the sum of the values of its bits.

There is a natural relationship between computations on interval trees and the computation of attributes in an
attribute grammar. (In fact, I conjecture that attribute grammars can be useful as a formal means for specify-
ing augmentations for many other tree-structured data structures, outside of the applications described here.)
As demonstrated below, I have exploited this relationship to formalize the specification of efficient data
structures used in state generation.

3.6. Implementation

In the case of scheduling, we can consider a sequence of events as a string in a language (or, if you prefer, a
program in a language). Schedule constraints can then be expressed using the grammar itself. For example,
if task A must precede task B, the grammar can be written so as to generate only schedules in which A pre-
cedes B:

<schedule> := <s> <A> <s> <s>
<s> := <task> <s>

| <emptyString>
<task> := <C>

| <D>
| <E>
| ...

In practice, the difficulty with this approach is that it is cumbersome to incorporate multiple constraints.
Some grammatical formalisms overcome this problem by having the grammar over-generate strings, which
are then pruned back by additional constraints.

For these reasons, I will view the problem as defining a separate grammar for each state variable or con-
straint. The feasible schedules would then be contained in the intersection of the languages defined by these
grammars. But I will also permit constraint violations in the language, which, however, will be flagged as
errors using error attributes in the grammar.

Error attributes are useful for several reasons. In a manual schedule editor, the user will often be generating
schedules that temporarily violate constraints: rather than constrain editing, it is better to isolate and flag
errors where they occur, and permit the user to continue. The analogy to editors for computer programs is
obvious. An editor that detects and marks semantic errors would be a godsend. But an editor that prevents
any kind of error from being introduced, even temporarily, would hamper productivity.

Another reason to permit errors is to support search algorithms that are incremental (and repair violated con-
straints), or use a “repair” approach (starting with a random and probably illegal schedule, and gradually
repairing it during a search).

The first scheduling example of an attribute grammar is a model of the behavior of a capacity state variable,
with “fill” and “use” events. The statements in curly brackets are the specification of attributes.

<schedule> := <fillEventSeq> <usage>
{ schedule.end = capacity - usage.used; }

<fillEventSeq> := <eventSeq> <fill>
<eventSeq> := <fillEventSeq>

| <useEventSeq>
| null

<useEventSeq> := <eventSeq> <use>
<usage> := <usage> <use>

{ usage.0.used = usage.1.used + 1; }
| null

{ usage.used = 0; }

45

Figure 3-4. Attributed Binary-Number Parse Tree.
Attribute values are shown here in italics. The first panel shows constant
attribute values from the grammar. In the second panel, attribute definitions com-
pute the length of a left-recursive bitlist, and the scale of the leftmost bit. In the
third panel, a ONE-bit with known scale computes its value, and the fraction’s
scale is determined by its length. Several more stages of attribute computation
would evaluate the entire tree.

num

bitlist
bitlist

bitlist bit

bit

bit

ONE
ONE ZERO

DOT

value=0

scale=0

length=1

num
bitlistbitlist

bitlist bit

bit

bit

ONE
ONE

ZERO

DOT

value=0

scale=0

length=1
scale=0

length=2

num
bitlistbitlist

bitlist bit

bit

bit

ONE
ONE

ZERO

DOT

value=0

scale=0

length=1
scale=0

length= 2

value=2^0

scale= –2

46

In this example, the end attribute of a schedule defines the remaining capacity after the schedule executes.
This attribute is defined using the constant capacity and the used attribute of the usage substring. An <fillEv-
entSeq> node spans any event sequence terminated by a <fill> event. A <usage> node spans any number of
<use> events. As in a YACC grammar [77], the attribute definitions for <usage> use the notation “usage.0”
and “usage.1” to refer to the parent and child <usage> nodes respectively.

This grammar unambiguously defines the behavior of the capacity state variable after any sequence of <fill>
and <use> events. To maintain the intermediate value of the variable at any point in the parse tree, one would
use inherited attributes to incorporate “left context” (in the compiler jargon) in the attribute definition. The
next example—a balanced grammar—includes left context.

The tree structure of grammars suggests that it would be possible to compile this grammar into a tree data
structure for maintaining state information. Two steps remain before we can consider this mapping between
attributed parse trees and augmented data structures.

3.6.1. Balanced Parse Trees

The first step is to keep a balanced parse tree. Because of the last production rule in the previous grammar,
one obtains a left-skewed parse tree, which would produce O(N) access time for a tree with N leaves. In a
data structure, however, one wants to maintain balance to ensure rapid O(log N) processing of queries. We
can permit balance by introducing ambiguity (multiple parses) into the grammar, as follows:

<schedule> := <schedule> <schedule>
{ schedule.1.beg = schedule.0.beg;

schedule.2.beg = schedule.1.end;
schedule.0.end = schedule.2.end; }

| <fill>
{ fill.beg = schedule.beg;

fill.end = capacity;
schedule.end = fill.end; }

| <use>
{ use.beg = schedule.beg;

use.end = use.beg - 1;
schedule.end = use.end; }

| null
{ schedule.end = schedule.beg; }

In fact, this grammar is significantly simpler than the previous one, in that it is easier to both design and
read. The beg and end attributes represent the remaining capacity at the beginning and end of the interval
spanned by each parse-tree node.

3.6.2. Node-Oriented Trees

The second step is to convert from a leaf-oriented tree to a node-oriented tree. Most parse trees are leaf-ori-
ented: portions of the text being parsed are represented at the leaves, while internal nodes represent abstract
aggregations (e.g., clauses and phrases). Most tree data structures, however, are node-oriented. Consider a
binary tree for storing a sorted list: the sorted items are conventionally stored at each node in the tree, not
just at the leaves.

We can get the usual node-oriented tree by ternary rules such as those in the following grammar (shown
without attribute dependencies):

<schedule> := <schedule> <fill> <schedule>
| <schedule> <use> <schedule>
| null

47

3.6.3. Adding Persistence to the Data Structure

Persistence is a valuable feature in data structures that are to be rapidly modified while retaining previous
versions. Different types of search algorithms place different persistence requirements on state generation
facilities:

• Hillclimbing algorithms focus on a single state at all times, and never re-examine old states. State gener-
ation can be a simple “write-in-place” operation, and there is no need for persistence of old versions of
the state.

• Backtracking algorithms visit states in an order that is best understood using a stack of states. State gen-
eration is a “push” on this stack. A backtrack is a “pop,” visiting the state underneath the top-of-stack.
State generation can be a modified “write-in-place” operation, where every state retains sufficient infor-
mation to undo the operation that generated it from its search tree parent.

• Best-first algorithms visit states in an arbitrary order. State generation is at best a “copy-on-write” opera-
tion, where unmodified portions of states are shared to reduce storage requirements.

Interestingly, the field of scheduling has many more hillclimbing search applications than are found in other
application areas, and many fewer best-first search applications. This is because scheduling states (partial
schedules) are both complex and large, thus imposing high generation and high storage costs if best-first
search is used. To offset these costs, I have applied standard techniques for making tree data structures “per-
sistent,” that is to reduce the costs of making and undoing incremental changes. One standard technique [39]
is to have a modification to the original data structure create a second version of the data structure, with the
two versions sharing many subtrees in common. Figure 3-5 illustrates the use of copying and sharing in the
technique. As the figure suggests, insertions or deletions in a balanced tree require no more than O(log N)
nodes to be copied.

One difficulty with persistent data structures is that a tree-node has multiple parents (one for each version
that shares the node). In Figure 3-5, nodes E and G have two parents. This makes it difficult to rebalance the
tree: the rebalancing operation typically requires access to a parent pointer. I use a technique that I call
dynamic parenting to permit algorithms for a simple, non-persistent tree to be applied to a persistent tree
structure, without loss of correctness or efficiency. Briefly, dynamic parenting sets the parent pointer for
node X to node Y, whenever node Y is used to reach node X. Dynamic parenting permits one to traverse,
modify and then rebalance a dynamic data structure, and only consider the dynamic aspect when modifying
nodes. Dynamic parenting does require a guarantee that the tree will be accessed via a single root pointer at
a time: the dynamic parent pointers would become invalid by simultaneous traversals that began at different
root pointers.

3.7. Examples

In this section, I provide formal specifications of the examples discussed in Section 3.4.

Several of the examples (Min-Conflicts, DefExec, and ResourceUsage) are very similar in implementation:
each involves maintaining a sum of interval heights. In the case of Min-Conflicts, intervals of height one rep-
resent periods of constraint conflict. In the case of DefExec, each interval of height k represents a task that
uses k units of the resource during the “definite execution” interval. ResourceUsage extends these two by
allowing for variable resource availability, as well as intervals representing resource usage.

I define ResourceUsage with the following grammar. The “.k” syntax for usageOn and usageOff refers to the
“key” associated with the event (in this case, the resource capacity required). Each event also has a “.t”
attribute which stores the time index for the event.

48

ATTRIBUTE ResourceUsage {
<schedule> := <schedule> <usageOn> <schedule>

{ schedule.1.beg = schedule.0.beg;
usageOn.beg = schedule.1.end;
usageOn.end =
usageOn.beg + usageOn.k;
schedule.2.beg = usageOn.end;
schedule.0.end = schedule.2.end; }

| <schedule> <usageOff> <schedule>
{ schedule.1.beg = schedule.0.beg;

usageOff.beg = schedule.1.end;
usageOff.end =
usageOff.beg - usageOff.k;
schedule.2.beg = usageOff.end;
schedule.0.end = schedule.2.end; }

| null
{ schedule.end = schedule.beg; }

}

A ResourceCapacity attribute is easily defined using an almost identical grammar. We can then define a
ResourceUnderflow attribute as follows:

ATTRIBUTE ResourceUnderflow = ResourceCapacity < ResourceUsage

Figure 3-5. Persistent Data Structure Example.
The data structure at left is a classic binary tree, sorting the letters “D,E,F,G,H.”
The pointer p refers to this data structure. If we wish to insert the letter “C,” and
create a new data structure q, without modifying p, we can proceed by copying
the tree nodes containing pointers that must be changed. In this case, the left-
ward-pointer in node D must be changed: so D is copied. Because D is now
ambiguous, q must point to the new version of D. As a result, the nodes on the
path back to the root must be copied as well. These nodes are shaded in the dia-
gram at left. Nodes E, G, and H are shared by data structures p and q.

HE

F

GD

HE

F

p

GD

F

C

q

D

p

49

This syntax defines a local boolean attribute ResourceUnderflow, which can be computed from the other two
attributes.

The second example is the Piecewise Linear Tree, used in Chapter Two. These are used to calculate the
“start-profile” and “end-profile” of subprojects in the MPC2 algorithm. The start profile is defined by com-
puting ResourceUsage (as above), then applying the average operator to compute average usage, and then
multiplying the average usage by each event’s time.

ATTRIBUTE StartProfile = (avg(ResourceUsage) * t)

The “average” operator simply expands into specialized code which maintains and recalculates the average
(and also creates and maintains a “length” attribute for the length of each subtree). The StartProfile is used to
maintain the maximum cumulative resource usage over the first t seconds of the subproject.

The third example is the representation of the “battery” state variable, discussed above. This attribute models
the state of a battery given a sequence of Fill and Use events. The grammar is as follows:

ATTRIBUTE BatteryLevel {
<schedule> := <schedule> <fill> <schedule>

{ schedule.1.beg = schedule.0.beg;
fill.beg = schedule.1.end;
fill.end = capacity;
schedule.2.beg = fill.end;
schedule.0.end = schedule.2.end; }

| <schedule> <use> <schedule>
{ schedule.1.beg = schedule.0.beg;

use.beg = schedule.1.end;
use.end = use.beg - 1;
schedule.2.beg = use.end;
schedule.0.end = schedule.2.end; }

| null
{ schedule.end = schedule.beg; }

}

3.8. Evaluation

It is somewhat difficult to evaluate a compilation technique such as the one described in this chapter. The
main claim is that the technique is general, and applies to many heuristics and constraints: this has been
demonstrated in the previous section.

The second claim is that the technique produces code that is expensive to produce by hand. My own experi-
ence confirms this, and was the inspiration for trying to apply formal incremental computation techniques
(such as attribute grammars) to the problem of designing incremental data structures for use in search algo-
rithms.

Specifically, in the DTS system, I manually coded augmented interval tree data structures for a subset of the
heuristics and constraints specified in the previous section. These data structures and supporting infrastruc-
ture were about 6000 lines of C++ code and header files, which went through another 6000 lines of source-
code changes/additions/deletions over an elapsed year of development and debugging. You may now guess
my motivation for developing better tools for this problem.

Yet I had to develop such efficient data structures in order to improve the performance of my scheduling
search algorithms: I was attempting to use learning techniques, and even if the search was sufficient to solve
problems efficiently, it had to be 100s or 1000s of times faster in order to generate sample data for learning.
Over the course of that year of manual development, I speeded up my naive implementations by over three
orders of magnitude on the problems I was solving (typically hundreds of tasks, with complexity reductions
from roughly O(N) to O(log N) as described earlier).

50

To confirm this performance improvement in isolation, I developed a new “naive” Java implementation of
the min-conflicts heuristic, and compared it to an interval-tree Java implementation. I then timed the basic
operations for varying number of constraints (each constraint corresponds to an interval that must be rea-
soned about): results are shown in Table 3-1.

Finally, I note that the data structures produced by the attribute grammar compiler are almost identical in
memory and CPU usage to the manually coded versions, largely because they have been designed to use the
same infrastructure of red-black balanced trees.

3.9. Related Work

The problem of computing heuristics efficiently has some extremely interesting special cases. Consider
mixed-integer programming. Branch-and-bound solutions to mixed-integer optimization problems use the
“relaxed model” formalism to compute lower-bound heuristics on the optimal solution to each subproblem.
The relaxed model in this case is a linear program, derived by assuming that the integer variables can in fact
take on non-integral values [131].

The effort expended to devise efficient algorithms to calculate this heuristic efficiently, and if possible, incre-
mentally, illustrates the problem I am addressing in this chapter. If the linear program heuristic could not be
calculated efficiently, branch-and-bound techniques would be hopelessly impractical. Furthermore, the heu-
ristic value for similar subproblems should be used when recalculating the heuristic at a nearby node of the
search tree. Again, without techniques for doing so, branch-and-bound techniques would be limited to
extremely small problems. Of course, researchers have directed prodigious efforts toward the rapid evalua-
tion of these linear program heuristics. For example, after man-months of reformulation and approximation
efforts, a group at Georgia Tech managed to solve each linear program relaxation of their airline fleet alloca-
tion problem in only a few minutes. It is hard to imagine, but each of these several minute periods is inside a
subroutine within the state-generation routine of a branch-and-bound search algorithm. Luckily, the branch-
and-bound search for this problem generates only a few dozen nodes before finding a solution.1

naive
heuristic

evaluation

interval-tree heu-
ristic

evaluation

interval-tree update
(new constraint)

10 15.8 ms .2 ms 3.6 ms

number of

constraints

100 146.7 ms .2 ms 3.8 ms

1000 1512.9 ms .2 ms 5.6 ms

10000 19664.2 ms .2 ms 8.5 ms

Table 3-1. Performance of naive and interval-tree min-conflicts heuristics

This table gives the average time for the basic operations in a naive implementa-
tion and an interval-tree implementation of the min-conflicts heuristic. All opera-
tions are coded in Java and times are averaged over 10000 function calls in
unrolled loops. As the table shows, the naive evaluation cost is linear in the num-
ber of constraints. The two interval-tree operations are O(1) and logarithmic in
the number of constraints.

51

A similar example, but with vastly different speeds, arises in computer chess programs. The computer chess
advocates of “brute-force” intelligence are in fact relying on advanced hardware solutions to the problem of
generating states and evaluating heuristics. Even the software-only computer chess programs (such as the
Hitech simulator [12]) dedicate well over 50% of their source code to the problem of generating and evaluat-
ing states.

Even in the lowly Fifteen-Puzzle, similar problems arise in state generation. The Fifteen-Puzzle implemen-
tations I used in previous research explores 4.5 million states per second on a 270-Mhz UltraSPARC-IIi
CPU.1 A naive implementation—without incremental state-generation and heuristic evaluation—is fifteen
times slower, searching only 300,000 states per second. These examples suggest to me that the lack of tech-
niques for developing state generators and heuristic-evaluators hinders the development of new heuristic
search applications, impedes the statistically significant evaluation of such applications, and effectively
blocks the development of learning systems, some of which must run millions of problem instances to tune
their performance (e.g., Deep Thought [95], Neurogammon [120]).

Among the applications of attribute grammars is the specification of language-specific editors [107, 108,
109]. The basic idea in such an editor is to represent the program (or a file) as an attributed parse tree. As the
file is edited, the editor ensures that attributes are updated as necessary. Often, an intermediate version of the
program will be ungrammatical. This is modelled in such an editor by extending the grammar (so that every
program is “grammatical”, i.e., generated by the extended grammar) but incorporating “error attributes” to
flag the errors. An attributed tree whose error attributes are not set corresponds to a legal program in the
original grammar.

In other practical work on attribute grammars, Bischoff [14, 15] has developed a software tool, OX, which is
an attribute grammar extension to the standard YACC/LEX tools. In addition, attribute grammar specifica-
tions have been done for a number of languages, including ADA, Simula and Pascal [107, p. 24].

3.10. Summary

The initial motivation behind this work was the problem of computing heuristics faster. One obvious
approach is to compute them incrementally, using an appropriate data structure that is inexpensive to update.
A tree-based data structure suggests itself for many heuristic functions: if properly designed, the heuristic
value can be read off the root node. The resulting data structure is unusually general. For example, the tree
structure can be used to maintain information on state variables (e.g., battery power, machine configuration),
with most heuristics being a simple kind of state variable. In this chapter, I have shown that the specification
of the tree structure can be formalized using techniques derived from compiler design. It is possible to com-
pile a state-generator from a formal specification of the heuristics and state variables that must be maintained
as each state is generated.

In short, I have examined a flexible data structure for efficient and incremental calculation of heuristics and
constraint checks, and then described how the data structure can be compiled from a declarative specifica-
tion of the heuristic functions and constraints.

I have found that many scheduling heuristics that I have encountered can be represented within this interval
tree framework. In fact, the specification syntax and use of attribute grammars was inspired by reverse-engi-
neering several hand-coded incremental state-generators that I developed in a previous scheduling system. I
believe that the technology described here will prove useful in a number of search and mixed-initiative prob-
lem-solving applications.

1. George Nemhauser, invited talk, ORSA/TIMS 1992, San Francisco.

1. Thanks to Rich Korf for making the original versions of these programs available to me.

52

53

4 Decision-Analytic Search Ordering

My thesis is that some rather straightforward, simple,
nonesoteric analysis of complex decisions can make a
net positive difference in society.

------------------------- Howard Raiffa

Few complex decisions are more in need of “straightforward, simple, nonesoteric analysis” than the millions
of decisions made each second by computer programs acting on our behalf. After all, if we are to take seri-
ously the notion of software agents [42, 117], then software should behave as the agent to our principal, i.e.,
with our preferences and beliefs in mind. Where possible, individual decisions should be made as if the
human were making them, but at speeds that humans could never achieve.

As Russell and Wefald [113] point out, computer programs take actions not only at the “object-level” (deci-
sions about external entities, such as actions in the world) but also at the “meta-level” (decisions about inter-
nal entities, such as computations and beliefs). The view that computations should be considered as
actions—subject to deliberation and rational choice—has been particular appealing to designers of search
algorithms [8, 52, 55, 80, 110, 112, 113] because of the potential for rationalizing the control of search.

This chapter describes the application of decision theory to the computational model underlying common
search algorithms such as branch-and-bound and backtracking. My goal in using decision-theoretic search
algorithms in scheduling applications is to reduce the number of states examined: my hope is that decision-
theoretic tools can provide this benefit by explicitly trading off the cost of search against the gamble that a
better solution will be uncovered by continued search, and by ordering the search in the hope of finding good
solutions as quickly as possible. In this chapter, I focus on search ordering.

I began this research as part of the Bayesian Problem-Solver (BPS) project [50, 51, 80]. The motivation for
BPS can be summarized as follows:

• Search algorithms, and problem-solvers in general, recommend actions to their users (or take actions on
their behalf): they solve the “action selection” problem. In most interesting cases, there is insufficient
information to prove that the selected action is optimal, or even that it will achieve the required goals or
satisfy the maintenance of other necessary conditions.

• Action selection is thus a problem of decision-making under uncertainty. Basic consistency properties of
rational decision-making under uncertainty require that a consistent “rational” decision-maker will
choose the alternative with maximum expected utility.

• To implement this approach, the technical problem is to compute expected utilities given the available
information (heuristic information, previous problem-solving experience and background knowledge).

54

• Expected utilities for alternatives can be computed after first computing distributions over utility
attributes. These distributions can be computed in appropriately designed Bayesian Network structures
[98, 99]. These networks include “evidence nodes” for the raw heuristic evaluation functions. Condi-
tional probabilities constrain the relation between evidence nodes and utility attributes, based on learning
from experience, as well as constraints of the problem domain (e.g., in path-planning, the triangle ine-
quality constrains the solution-length utility attribute).

In previous work with Andrew Mayer, I applied this approach to single-agent problem-solving and two-
player games, in each case using information from partially-explored search trees to estimate expected utili-
ties, which are then used to drive maximum-expected-utility decision-making. In Mayer’s dissertation [80],
this approach is demonstrated to improve decision quality in a single-agent limited-time search problem,
albeit with considerable computational overhead. Interestingly, the estimates of expected utility from the
BPS-inference algorithm are so accurate that it can predict its own decision quality. Mayer’s dissertation
focused solely on the problem of inference from partial search trees. In this chapter, I use very simple infer-
ence techniques, but focus on how to use inferred probabilities and utilities to control search.

4.1. Structure of the Chapter

Sections 4.2 and 4.3 present background information on branch-and-bound and decision theory. Section 4.4
motivates the application of decision theory to heuristic search. Section 4.5 analyzes the decision trees for
the search ordering problem, and describes ordering heuristics for the case of linear and exponential utility
functions. Finally, Section 4.6 provides a demonstration of the BPS search-ordering heuristic in the context
of a propositional satisfiability search algorithm. Section 4.7 describes related work, and Section 4.8 sum-
marizes the chapter.

4.2. Background: Branch-and-Bound

The theoretical contributions described in this chapter have been applied to improve the speed of branch-
and-bound search for scheduling applications. The branch-and-bound technique is used in a wide variety of
algorithms. As Nau, Kumar and Kanal [94] have shown, algorithms as varied as A*, AO*, B* and SSS* can
be brought under the branch-and-bound framework. In addition, branch-and-bound is the main loop of
important, practical algorithms for solving integer programming (IP) and mixed integer programming (MIP)
problems (see chapters 7 and 8 of the textbook by Williams [130]). In future work, I hope to apply decision-
analytic techniques to all of these areas because of the broad impact it could have.

An instantiation of the general branch-and-bound algorithm is composed of a specific branching rule and a
specific bounding rule. Like all search algorithms, branch-and-bound is concerned with efficiently exploring
a large, implicitly specified set of possible solutions. The branching rule simply takes a set of possible solu-
tions and returns a set of exhaustive and mutually exclusive subsets of possible solutions. The bounding rule
computes a bound on the maximum value of the objective function within a set of possible solutions. The
intuition behind branch-and-bound is that subsets can be ordered by their bounds so as to find a good solu-
tion quickly, and after a solution is found, the updated bounds can eliminate entire subsets from consider-
ation. In this way, the entire set of possible solutions can be searched faster, because many subsets (or nested
subsets) can be eliminated by the ever-improving bounds.

A simple depth-first branch-and-bound algorithm is presented in Listing 4-1. The branching rule, together
with the initial set of solutions, determine a tree-structured search space. The bounding rule permits this tree
to be searched selectively. Specifically, the algorithm maintains a current bound, indicating the objective
function value of the best solution found so far. When exploring any set of solutions, step 2 tests whether the
set can possibly contain a solution of greater value. If not, the set is said to be fathomed. Otherwise, the set
will be branched into exhaustive and mutually exclusive subsets, which will each be searched recursively. As
solutions are found, the bound is updated if necessary.

55

The example of A* [97] should suffice to make branch-and-bound concrete for readers with an AI back-
ground. The A* algorithm searches for a minimum-cost path through a graph, between an initial state I and
any member of a set of goal states G. The graph is defined as a set of states S, and a set of operators O. The
states and operators define a partial function: that maps states and operators to states. We can
define the space of possible solutions as containing all operator sequences. The A* algorithm begins with the
set s defined as the set of all sequences. The branching rule partitions this set based on the first operator cho-
sen. Subsequent applications of the branching rule result in a prefix-tree of operator sequences: each node in
the tree represents all sequences with a given prefix. Because A* is best-first, it uses the slightly modified
algorithm schema presented in Listing 4-2. In best-first branch-and-bound, a set of sets is maintained, repre-
senting a global partition of the original set. At each step, the set with the lowest upperbound is chosen from
the global partition. The branching rule then partitions this set, adding the resulting subsets to the global par-
tition. This can be visualized as a best-first search of the prefix-tree of operator sequences.

In A*, admissible (under-estimating) heuristic functions provide lower-bound information on the set of
sequences with a given prefix. Specifically, if the cost of an operator prefix plus the heuristic function value
exceeds the current bound, the prefix or path cannot contain a solution better than the bound. After a solution
is found, it provides an upper bound on acceptable solutions, and some subtrees will be pruned from the
search tree, if their lower bounds exceed the upper bound.

4.3. Background: Decision Theory

I introduce the topic of decision theory by focusing on the specific problems of reasoning about uncertainty
that are associated with branch-and-bound algorithms. For a good general introduction to decision theory,
see the textbook by Clemen [27].

Listing 4-1. Depth-First Branch-and-Bound.

Bound DFBB(Set s, Bound b) {

Bound sb=upperbound(s); 1

if (sb <= b) { 2

return sb; // return a value <= b to indicate fathomed node 3

} else if (terminal(s)) { 4

if (sb > b) { return sb; } else { return b; } 5

} else { 6

List subs = branch(s); // create a list of subsets of s 7

Set ss; 8

while (ss = pop(subs)) { // iterate over subsets 9

Bound newb = DFBB(ss, b); // recursively find bound in subset 10

if (newb > b) { b = newb; } // found better solution; raise bound 11

} 12

return b; 13

} 14

}

S O× S→

56

Traditionally, branch-and-bound algorithms such as A* have used objective functions to rate solutions.
Because an objective function is used only to compare alternative branches or solutions, it is only required to
impose a reasonable ordering on solutions. Any order-preserving (i.e., monotonically increasing) transfor-
mation of the objective function yields identical behavior.

Branch-and-bound algorithms also use heuristic functions and bounding functions. In some cases, all three
(objective, heuristic and bounding functions) are computed using the same function. Like objective func-
tions, the definition of heuristics is incomplete and underconstrained: heuristics need only provide an order-
ing on subtrees in the branch-and-bound search. Any order-preserving transformation yields identical
behavior. Bounding functions (e.g., admissible heuristics) must provide a true lower or upper-bound, but that
still underconstrains their definition.

If we wish to handle either uncertainty or computation time in our branch-and-bound algorithm, we must
make additional demands on the heuristic function. It so happens that these demands are sufficient to force a
precise definition for the information desired from a heuristic function.

If uncertainty is added, then we must be able to assign preference to gambles, decisions in which the solution
or objection function value is not certain. Every decision in branch-and-bound is a gamble. For example, to
order search after branching is to gamble that one search order is better than another. Also, to terminate
search early, or set an aspiration level, is to gamble that more investment in search time would not yield a
better solution.

Listing 4-2. Best-First Branch-and-Bound

Bound BFBB(Set s, Bound b) {

Heap open; 1

Bound sb = upperbound(s); 2

insert(open, s, sb); 3

while (s = delete-min(open)) { 4

sb = upperbound(s); 5

if (sb <= b) { 6

return sb; 7

} else if (terminal(s)) { 8

if (sb > b) { b = sb; } 9

} else { 10

List expansion = branch(s); 11

while (node = pop(expansion)) { 12

insert(open, node, upperbound(node)); 13

} 14

} 15

} 16

return b; 17

}

57

Specifically, a gamble is a probability distribution over the possible outcomes of a decision. An outcome can
be defined as the measurable attributes of the solution that will result from a decision. A choice between two
simple gambles is shown in Figure 4-1.

By recording preferences over such gambles, we can construct a utility function that encodes the user’s pref-
erences, assuming that the user’s preferences obey natural axioms of consistency in decision-making (specif-
ically, the axioms of utility theory and decision theory [115]). The utility function can then be used to
compare any two gambles with the user’s preferences in mind. The utility function will satisfy the funda-
mental property that the decision-maker will be indifferent between a known solution with utility u, and a
gamble between uncertain solutions whose expected utility is u. I will typically define a utility function as a
function of a set of utility attributes (such as computation time, schedule feasibility and schedule cost).
Because the expected utility is only used to compare gambles, the utility function can be scaled or offset
(i.e., affine-transformed) without changing the decision. But by convention, U(best outcome)=1 and U(worst
outcome)=0, which makes the utility function identified by the constraints. The details of the elicitation and
use of utility functions are sketched in Figures 4-1 and 4-2.

Decision theory defines a rational decision-maker as satisfying specific consistency properties in decisions.
The fundamental theorem of decision theory states that rational decision-makers act as if they (1) assign util-
ities to the possible outcomes of actions, (2) assign probabilities to the outcomes that might occur, and (3)
choose an action that maximizes expected utility. The theorem follows from the consistency properties,
which are known as the axioms of utility theory.

If heuristic functions satisfied the requirements of utility functions, we would be done. But they do not, and
can not, for three reasons. The first is that heuristic functions are encoded in applications, and do not change
from user to user: but utility functions are user-specific. The second is that multiple heuristic functions might

Figure 4-1. Simple Gambles used for Eliciting Utility Function
The diagram illustrates a choice between two gambles. Gamble 2 (G2) offers a
certain chance at a particular outcome. Gamble 1 offers an uncertain chance
between the worst and best outcome. By definition, a decision-maker will prefer
Gamble 1 if P=1, and Gamble 2 if P=0. Therefore, there must be an intermediate
value for P which makes the decision-maker indifferent. This value is called the
preference probability, or utility for outcome A, i.e., U(A)=P.

P

1-P

Best Outcome

Worst Outcome

Outcome A
Choice

Chance

G1

G2

58

Figure 4-2. Using Utility Functions to Compare Gambles
The top frame illustrates a gamble, which we must compare to another gamble in
order to make a decision. In the middle frame, we have replaced Outcome A and
Outcome B by equivalent gambles involving the Best and Worst Outcomes. The
distinction between Outcomes A and B is encoded in the preference probabilities
U(A)=P1 and U(B)=P2. In the bottom frame, we have algebraically simplified
the resulting gamble. This reduces the original gamble to a preference probabil-
ity (in this case P•(P1)+(1-P)•P2), whose form indicates that it can also be calcu-
lated as the expected utility for the original gamble (P•U(A)+(1-P)•U(B)).

P

1-P

Outcome A

Outcome B

Chance

1

P1

1-P1

Best Outcome

Worst Outcome

Chance

2

P

1-P

Chance

1

P2

1-P2

Best Outcome

Worst Outcome

3

(P)(P1)+(1-P)P2

Best Outcome

Worst Outcome

Chance

1
(P)(1-P1)+(1-P)(1-P2)

59

be useful, but the utility axioms require that they be combined into a single function. The third is that heuris-
tic functions commonly confound control information (search this subtree first) with preference information
(solutions with this property are better) in a way that unnecessarily complicates the task of designing “good”
heuristic functions (although it is possible to resolve this complication by deriving control information
through decision analysis and learning about the heuristic function’s behavior [113]).

Because of these difficulties, our research approach in the Bayesian Problem-Solver project [49, 50, 51, 53,
80] has been to treat heuristic functions and so-called objective functions as observed data—statistical evi-
dence—that can be used to condition estimates of utility. In other words, algorithms use the information pro-
vided by heuristic functions to estimate expected utility. This places no restrictions per se on a designer of
heuristic functions, but I conjecture that the most informative heuristic functions are those that accurately
estimate a single utility attribute (such as computation time, schedule cost, or value of scheduled tasks).
Such functions are easily calibrated and combined, both with other heuristic functions and with varying user
preferences.

In the Bayesian Problem-Solver approach, search is merely a mechanism for gathering data to use in calcu-
lating expected utilities for a decision problem. The search tree—its structure and heuristic function val-
ues—provides raw observation data that is used as conditioning information.

If the reader remembers nothing else from this chapter, I hope that the Bayesian Problem-Solver project’s
metaphor of search as decision-making remains after the engineering details have faded from memory.

4.4. Applying Decision Theory to Search

The question addressed by this chapter is how to implement a Bayesian Problem-Solver for scheduling prob-
lems: in other words, how to make rational decisions within a heuristic search algorithm suited for schedul-
ing search spaces. As described above, the axioms of decision theory lead to the result that a rational
decision-maker, i.e. one who is consistent with the axioms, will choose the gamble with highest expected
utility.

To ground this discussion, I will analyze a canonical decision situation in heuristic search: where should we
direct our search.

But first, we must consider what kind of utility function is involved in these analyses.

4.4.1. The Utility of Computation Time

In a previous section, I noted that to terminate search early, or set an aspiration level for branch-and-bound,
is to gamble that more investment in search time would not yield a better solution. But that seems like a con-
trived example. If we have a current-best-solution in hand with expected utility u, then further search will not
take it away.* Therefore, where is the “gamble”? It would seem that further search is always useful: it can
only improve upon the solution we have in hand.

But in fact, the passage of time degrades the value of a solution. If this were not true, then users would be
satisfied with a scheduling system that promised a dazzling solution after an arbitrarily long computation:
but they are not satisfied with that. A more formal argument goes as follows: a solution g1 at time t cannot be

* Of course, further search may reveal problems with our current best solution, thus lowering its expected
utility. Chess programs, for example, alter their assessment of “good” moves and “bad” moves as new varia-
tions are uncovered by deeper search. But our current expected utility for the solution should include our
own estimates of these risks. For example, it should not be the case that we currently expect that our future
estimate of an action’s expected utility will only decrease with further search (ignoring the cost of time).

60

less desirable than the same solution g1 at time t+δ, as the former can be converted to the latter when a no-
cost option of delaying is exercised. In most natural cases, g1 at time t will be preferred to g1 at time t+δ
because of the opportunity cost of delays. The value of most solutions degrades over time.

AI research on modeling the utility of computation time in problem-solving is a recent, but quite diverse
enterprise. Work on anytime algorithms is the best known [18, 133], but decision analysis has also informed
the field more directly, in the work of Harada [56], Horvitz [60], Russell & Subramanian[111] and Russell &
Wefald [113]. These researchers have mapped out basic modeling issues related to fixed deadlines, uncertain
but absolute deadlines, etc.

In practice, the utility of time is likely to also involve a number of other issues: one is the distinction between
rapid prototyping and a fielded application. When rapid prototyping the model for a problem, I would prefer
to know quickly that the problem is soluble at all, because of the diagnostic value of this information when
correcting a misspecified or incomplete model. So poor solutions achieved in short order will be more valu-
able during system prototyping than as the output of a fielded application. After the problem specification is
complete, and the system fielded for use in an application, the time utility function might be changed radi-
cally. A similar argument could be made for the demands on a programming-language compiler with a slow
code-optimizer: during rapid-prototyping and debugging, compilation should be fast but the resulting exe-
cutable programs need not be, whereas during performance testing and delivery, one wants fast programs
and can afford slow compilation.

There is much to be done in understanding preferences for computation time, and it seems best to begin with
simple utility functions. For simplicity, I follow Russell and Wefald [113] in assuming that the utility func-
tion is separable into two components U[s] = Ua [a(s)] + Ut [t(s)], one for the time-independent evaluation
of the solution based on its utility attributes a(s), and one for the time t(s) at which solution s is provided as
output by the system. This assumption implies that time and the other attributes exhibit mutual preferential
independence for the decision-maker [27, p. 579]: for example, always preferring less time to more, no mat-
ter what the other solution attribute values are. A stronger condition is necessary and sufficient for separabil-
ity: mutual utility independence [27, p. 580].

To understand the mutual utility independence property, it is useful to realize that any uncertain gamble on
solution attributes A1 and A2 is completely summarized by the joint probability distribution, p, over A1 and
A2. Call the corresponding marginal distributions p(A1) and p(A2). If the two attributes are mutually utility
independent, then if I prefer a gamble involving px to one involving py, such that px(A2) = py(A2), then I will
also prefer a gamble involving pj to one involving pk, as long as px(A1) = pj(A1) and py(A1) = pk(A1) and
pj(A2) = pk(A2). In other words, my risk aversion for attribute A1 is not influenced by the value of A2.

This is not always the case, of course: if A1 and A2 are the satisfaction of two customers, then the importance
of my treatment of one customer may change if the other is gravely dissatisfied (particularly if I have no
other customers). As should be apparent, the problem here might be resolved by the addition of extra
attributes (in this case, perhaps the sum of customers’ satisfaction). In many cases, the property of mutual
utility independence does not hold, or does not hold without such additional attribute assessments. But as it
is a common working assumption for decision analysts, and the focus of this dissertation is not utility assess-
ment and modeling, I will adopt the assumption from now on.

I have modeled deadline situations using two types of exponential utility function (pictured in Figure 4-3). In
the risk-averse case, utility prior to the deadline declines gradually as time increases, then declines sharply at
the deadline (the first derivative is negative and the absolute value of the first derivative is increasing). In the
risk-prone case, utility declines sharply as time increases beyond zero, and then the decline tapers off (the
first derivative is negative and the absolute value of the first derivative is decreasing).

In the risk-prone case, the only hope for a high utility result is to find a solution quickly, and so we would
expect that a utility-driven search algorithm would search small subtrees first. In the risk-averse case, the
important point is to not exceed the deadline, and so search should be ordered more conservatively. Another

61

function of interest, which will not be discussed in the dissertation, is the sigmoid function: risk-averse prior
to the deadline, and then risk-prone to get as close to the deadline as possible. (The basic sigmoid shape can
be achieved by adding two exponential functions, one which is risk-averse and another which is risk-prone.)

4.5. The Search Ordering Decision

I begin the analysis of the search ordering decision by describing a related problem: test-sequencing.

In its simplest form, test-sequencing [85, 118] concerns the optimal ordering of a sequence of n tests in order
to find a fault in a system, composed of n subsystems. In the fault-diagnosis literature, test-sequencing is
sometimes called troubleshooting. It is typically assumed that there may be more than one fault, but we are
interested in finding the first fault as rapidly as possible. It is also assumed that all tests are independent and
conclusive. The only difficulty is in the varying costs of the tests, and the fault probabilities for each sub-
system. The problem is to order the tests so as to minimize the expected time to uncover the fault.

This problem is intriguingly similar to common problems in heuristic search. For example, consider the
problem of ordering subtrees in a depth-first search, where the search stops after finding the first solution
that satisfies some condition. In this case, each test is a subtree search, the faults are the set of acceptable
solutions, and the problem is to find the solution with a search order that has lowest expected cost. Note that
this process does not find the best solution (by some utility measure), but merely any solution that satisfies
some predetermined “aspiration level” of utility: this is often called satisficing search.

Consider a simple search problem. Several subtrees (A,B,C,...) can be searched to find a solution. I will focus
on the pairwise ordering question: is it better to search A before B, or vice versa? I will assume a linear util-
ity function for computation time. Because we have an aspiration-level utility model, I will assume that the
utility of each solution is equal. By this utility model, we are concerned with finding a solution, if it exists, in
minimal expected time.

Figure 4-3. Utility Functions for Computation Time.

Time Time Time

U UU

Risk-Averse Risk-Prone Sigmoid

62

The decision tree for this problem is illustrated in Figure 4-4. For simplicity, I assume that the search cost
(C(A), C(B), etc.) for each tree is fixed. The solution probabilities within each subtree are not assumed to be
independent.

As illustrated in the figure, the choice is between ABZ and BAZ, where Z indicates the “prospect” we are
faced with if A and B have both been searched unsuccessfully (the prospect would typically be a choice
between further search or termination). The fact that this prospect is identical (i.e., is a shared subtree in the
decision tree) could greatly simplify the decision analysis, if we can avoid evaluating EU(Z), the expected
utility of the prospect. This happens to be the case, as the following analysis shows.

Consider the expected utility of the two branches of the initial decision:

Now subtract to compare the two expected utilities:

Figure 4-4. Pairwise Search Ordering Problem.
Square nodes indicate choice nodes (searching subtree A or B), and round nodes
indicate chance nodes (whether each subtree contains a solution). The subtree
labeled Z indicates the “prospect” we face if we search both A and B and have
not yet found a solution. The fact that Z is shared by both subtrees is the key to the
analysis: we do not need to compute the expected utility of the prospect Z directly.

Search A

Search B

Search B

P(A)

C(A)

C(B)

Search A

P(B|~A)

Z

P(A|~B)

C(B)

C(A)

P(B)

EU ABZ() C A() P A¬()C B() P A¬ B¬,()EU Z()+ +=

EU BAZ() C B() P B¬()C A() P A¬ B¬,()EU Z()+ +=

63

This difference simplifies to , which is greater than zero iff
, or equivalently, iff .

Thus we can order search by sorting the subtrees i in increasing order based on the measure P(i) / C(i), and
searching the subtrees in that order. (Note that C(i) is negative.) This result is recounted throughout the test-
sequencing literature [85, 118].

4.5.1. Test-Sequencing with Deadlines

But C(B) and C(A), the utility penalty of searching B and A, may depend on elapsed time. Assuming that
they do not amounts to assuming a linear utility function for computation time. However, we are often in
deadline situations, where utility for time changes dramatically near the deadline.

I will analyze the case of exponential utility functions (Figure 4-3) for the problem of ordering two subtrees.
Recall that we are assuming a time-separable utility function over the solution s provided by the search algo-
rithm: U[s] = U[a(s)]-U[t(s)]. If we find a solution s after searching only subtree A, then U[t(s)] =
U[C(A)].

For simplicity, assume that there is no uncertainty over C(B) and C(A). This assumption is unrealistic, but
permits us to understand the desired BPS behavior under risk-averse and risk-prone utility functions.

Again we begin by writing the expected utility for each ordering.

We use the equalities , , and
and then subtract in order to compare the expected utilities.

EU ABZ() EU BAZ()– C A() P A¬()C B() C B() P B¬()C A()––+=

P B()C A() P A()C B()–
P B()C A() P A()C B()> P B() C B()⁄ P A() C A()⁄>

EU ABZ() P A()U C A()() P A¬ B,()U C AB()() P A¬ B¬,()EU Z,C(AB)()+ +=

EU BAZ() P B()U C B()() P B¬ A,()U C BA()() P B¬ A¬,()EU Z,C(BA)()+ +=

P A¬ B,() P B() P A B,()–= P B¬ A,() P A() P A B,()–=
C AB() C BA()=

EU ABZ() EU BAZ()–

P A()U C A()() P A¬ B,()U C AB()()+=

 P B()U C B()() P B¬ A,()U C AB()()––

P A()U C A()() P B() P A B,()–()U C AB()()+=

 P B()U C B()() P A() P A B,()–()U C AB()()––

P B() U C AB()() U C B()()–[] P A() U C AB()() U C A()()–[]–=

64

Now we consider the form of the exponential utility function.

Substituting in the formula for EU(ABZ) - EU(BAZ) produces a simple subtree-ordering formula.

This implies that the two subtrees, A and B, can be ordered by comparing a simple function of each subtree:
thus a list of subtrees can be ordered by sorting them according to this function.

To illustrate the intuition behind this equation, consider a set of subtrees with N different probabilities and N
different search costs. As shown in Table 4-2, the optimal ordering varies as the parameters λ and β change
(only the sign of β is important). The table uses two utility functions (risk-prone and risk-averse, as illus-
trated in Table 4-1), and then applies the ordering function (derived above) to rank subtrees whose probabil-
ity and search time range from 0 to 1. As expected, zero-probability subtrees rank lowest for either utility
function. Subtree order increases as probability increases or time decreases.

The italicized values (along the main diagonal of the bottom two tables in Table 4-2) illustrate the difference
between risk-averseness and risk-proneness. Generally speaking, a risk-prone decision-maker will search
small subtrees despite a low probability of success (upper-left italicized values in the top table), in the hopes
of finding a fast solution. A risk-averse decision-maker will instead search large, high-probability subtrees
(lower-right italicized values in bottom table) before small, low-probability subtrees. Note that a risk-neutral
decision-maker would be indifferent between the subtrees represented by the main diagonal, as probability/
cost is equal along the diagonal.

4.6. Evaluation

I have tested the effectiveness of the BPS search-ordering techniques using POSIT, a highly-optimized prop-
ositional satisfiability tester developed by Freeman [45, 46], and based on the DPL algorithm (the Davis-Put-
nam algorithm [34] in Loveland’s form, as described by Davis, Logemann and Loveland [33]). POSIT
provides a simple validation of BPS search-ordering in the context of a realistic search-based problem-
solver. Because POSIT relies on backtracking search and a specialized form of constraint satisfaction, it
reflects potential advantages of using BPS in scheduling applications. In these experiments, I assume a linear

U x() βe
x λ⁄

=

C AB() C A() C B()+=

U x y+() U x()– βe
x y+() λ⁄ βe

x λ⁄
–=

βe
x λ⁄

e
y λ⁄

1–[]=

EU ABZ() EU BAZ()–

β P B()e
C B() λ⁄

e
C A() λ⁄

1–() P A()e
C A() λ⁄

e
C B() λ⁄

1–()–[]=

β P B() e
C B() λ⁄

e
C B() λ⁄

1–
---------------------------- P A() e

C A() λ⁄

e
C A() λ⁄

1–
----------------------------–=

βP B()

1 e
C B()– λ⁄

–
------------------------------ βP A()

1 e
C A()– λ⁄

–
------------------------------–=

f B β λ, ,() f A β λ, ,()–=

65

utility function for computation time. I also describe earlier experiments I performed on a scheduling appli-
cation [53].

4.6.1. Search Ordering in POSIT

Traditionally, constraint-satisfaction solvers rely on a variable-ordering and a value-ordering heuristic. The
variable-ordering heuristic determines which variable will be instantiated next. The value-ordering heuristic
determines the sequence in which to search the possible values for that variable.

In the case of POSIT, variable-ordering corresponds to choosing a propositional variable or “premise” p.
Value-ordering corresponds to deciding whether to instantiate p or ~p first. If the problem is unsatisfiable,
the choice is unimportant, because both the p and ~p subtrees (which I call the positive and negative sub-
trees) much be searched to verify that there is no satisfying assignment. But if there is a satisfying variable
assignment, the value-ordering choice can have an effect on performance, if the first subtree searched con-
tains a satisfying assignment.

Many different value-ordering heuristics have been proposed for the DPL algorithm which POSIT imple-
ments. Freeman [45, p. 82] gives a brief summary of these. Some researchers always choose the positive
subtree first, and Freeman notes that Crawford and Auton [31] did so “only because they could not convince
themselves that the branching order should make a difference.”

Other researchers have used a few basic features in constructing heuristics for value-ordering. The most
common feature is a count of how many times p and ~p occur in the shortest unsatisfied clauses in the for-
mula (these counts are known as pos_cost and neg_cost). If p occurs more often, POSIT chooses to instanti-
ate p first (i.e., searches the positive subtree first). Another feature that is used by other SAT testers is
whether or not there are any unsatisfied binary clauses in the formula (this feature is known as bin).

Dubois et al. [41] used a variation on this. If the formula is believed to be satisfiable, they used a version of
their system (S-SAT, based on an incomplete search algorithm) which would first choose p iff p satisfied
more clauses than ~p satisfied. Otherwise, they use a second version of the system (C-SAT), which uses the
opposite ordering. Dubois et al. determine whether a formula is believed to be satisfiable based on the well-
known “hard problems” threshold for random SAT problems [26].

Utility Functions Time

β λ 0 .1 .3 .5 .7 .9 1.0

Risk-Prone -20 -3 1.00 .73 .38 .18 .08 .02 0

Risk-Averse 1 4 1.00 .99 .96 .88 .71 .34 0

Table 4-1. Risk-Prone and Risk-Averse Utility Functions.

This table presents scaled utility values for two exponential utility func-
tions. Note that the risk-prone function reflects a sharp drop in utility as
time increases, even from 0 to .1.

66

Risk-Prone Subtree Ordering Time

.01 .1 .3 .5 .7 .9 1.0

Probability 0 0 0 0 0 0 0 0

.1 66 5.7 1.4 .6 .3 .1 .1

.3 197 17 4.1 1.7 .8 .4 .3

.5 328 29 6.9 2.9 1.4 .7 .5

.7 460 40 9.6 4.0 2.0 1.0 .7

.9 591 51 12 5.2 2.5 1.3 .9

1.0 657 57 14 5.7 2.8 1.4 1.1

Risk-Averse Subtree Ordering Time

.01 .1 .3 .5 .7 .9 1.0

Probability 0 0 0 0 0 0 0 0

.1 2.6 .30 .14 .12 .11 .10 .10

.3 7.7 .91 .43 .35 .32 .31 .31

.5 13 1.5 .72 .58 .53 .51 .51

.7 18 2.1 1.0 .81 .75 .72 .71

.9 23 2.7 1.3 1.0 .96 .93 .92

1.0 26 3.0 1.4 1.2 1.1 1.0 1.0

Table 4-2. Examples for Test-Sequencing with Deadlines.

Each cell in these two tables represents the subtree ordering “priority” for a given
search time and probability. Higher-numbered cells indicate subtrees which would
be searched first.

67

4.6.2. Search Ordering using BPS

To provide a simple demonstration of BPS search ordering, I applied it only to the top level value-ordering
decision in POSIT. Every subsequent value-ordering decision is made using POSIT’s built-in heuristics. I
gathered data for several benchmark problem sets, solving 10000 problems for each one (this is broken in
two equal halves: a training set and a test set).

The essence of the BPS approach is to estimate utility attributes from heuristic values. Specifically, the train-
ing data was used to construct estimates of P(satisfiable | heuristics) and E[cost | heuristics] for both the pos-
itive and negative subtrees. A simple uniform bucketing estimator was constructed over 3 existing POSIT
heuristic features (bin, pos_cost, neg_cost). Each training problem contributes to the estimates in a single
bucket, and the sample means for cost and satisfiable are used as the estimates. Where a bucket contained
less than 50 samples, BPS reverts to random value-ordering.

I compare BPS search ordering to five other heuristics.

• POSIT: the built-in value-ordering heuristic.

• NEGAT, which chooses the opposite of POSIT’s built-in choice.

• RANDOM, which chooses the positive subtree with probability 1/2.

• OMNISCIENT, an artificial algorithm which always makes the ideal ordering choice, given the available
heuristic information. (OMNISCIENT is the perfect “table-lookup” algorithm, given a table indexed by
the available heuristics. For each cell in the table, OMNISCIENT tabulates expected time over the train-
ing set for the two possible ordering choices. When run on the test set, OMNISCIENT chooses the order-
ing which minimizes expected cost on the corresponding cell of training set data.)

• ADVERSARY, an artificial algorithm which chooses the opposite of OMNISCIENT’s choice, i.e., the
worst possible ordering given the available heuristic information.

Table 4-3 summarizes the mean search time results for these 6 heuristics on two families of standard ran-
domized benchmarks. The Hard Random K-SAT benchmark is due to Mitchell, Selman and Levesque [84].
Each K-SAT problem is generated according to three parameters (clause length, proposition count, clause
count). For each clause, the member propositions are chosen at random, and each is negated with probability
1/2.

The graph coloring benchmark is part of the POSIT software distribution. Each graph-coloring problem is
generated according to three parameters (vertex count, edge probability, color count). The first two parame-
ters specify a random graph, and the third provides the number of legal colors. The SAT encoding uses a
propositional variable for each vertex/color pair.

Because we are only analyzing the top-level value-ordering decision in the search tree, the differences from
Random value-ordering are small and measured in single percentage points, as we see in the table. Nonethe-
less, the BPS value-ordering is within 1% of optimal (OMNISCIENT) in all but one case. In contrast, the
POSIT and NEGAT heuristics are each beneficial in only one of the two benchmark families. Freeman him-
self was puzzled by the odd behavior of the POSIT heuristic on Hard Random K-SAT problems:

My experiments on a wide range of benchmark problems overwhelmingly
supported the conclusion that p should first receive the truth value which
falsifies as many of its associated literals as possible. But my experiments
on hard random 3-SAT problems indicated that p should receive the truth
value which satisfies as many of these literals as possible.
(I have no explanation for this phenomenon.) [45, p. 55]

I suggest that the BPS search ordering analysis offers the explanation for this phenomenon. We can study the
problem with the POSIT heuristic by analyzing two of the BPS ordering decisions. For the GCOL-13 bench-

68

mark, where the POSIT heuristic does well, its preference matches that of the BPS heuristic, if we train BPS
on the single binary feature pos_cost > neg_cost (this is the binary feature used in POSIT’s value-ordering).
When POSIT prefers the positive subtree, BPS scores the negative subtree as (p/c)=(.444/2.1)=.2, while the
positive subtree is scored as (p/c)=(.445/1.0)=.4. The positive and negative subtrees have almost equal
chance of containing solutions, but the negative subtree is over twice as large on average.

However, in the KSAT-9 benchmark, POSIT does poorly. When the POSIT heuristic prefers the positive sub-
tree, BPS scores the negative subtree as (probability/cost) = (0.407/ 572) = .0007, while the positive subtree
is scored as (p/c) = (.281/505)=.0006. Here the tradeoff is more subtle, but according to BPS, the decrease in
size of the positive subtree (505 ms compared to 572 ms) is not worth the reduction in the odds of finding a
solution (.281 compared to .407).

Random Omniscient BPS Posit Negat Adversary

Benchmark
(parameters)

%
Satisfiable

(ms) (as percentage of Random search time)

ksat-6
((3,125,536) 48% 40.6 96.7% 97.2% 102.5% 97.6% 103.4%

ksat-7
(3,150,642) 48% 112.6 96.6% 97.1% 102.5% 97.5% 103.3%

ksat-8
(3,175,748) 48% 304.0 96.3% 96.7% 103.3% 96.8% 103.7%

ksat-9
(3,200,854) 49% 921.0 94.9% 95.8% 104.8% 95.1% 105.0%

gcol-10
(20,.5,4) 32% 39.9 98.7% 99.8% 99.8% 100.3% 101.3%

gcol-11
(30,.25,4) 48% 9.6 96.5% 96.6% 96.9% 103.3% 103.6%

gcol-12
(40,.2,4) 36% 24.5 98.0% 98.6% 98.5% 101.5% 102.0%

gcol-13
(15,.45,4) 44% 2.5 95.5% 96.3% 96.4% 103.6% 104.5%

Table 4-3. POSIT and BPS Results: Search Ordering.

This table presents search times for 8 benchmark problem sets for 6 value-
ordering heuristics applied to the POSIT SAT tester. Average search time over
5000 problems is given for the Random heuristic (in milliseconds). Search
time for the remaining 5 algorithms is given as a percentage of the Random
search time. Italicized percentages indicate value-ordering results that are
worse than Random choice for the given benchmark problem set.

69

To see how these top-level decision improvements “expand” when the different heuristics are applied to each
ordering decision in the search, I re-tested the KSAT-9 benchmark using four algorithms. A version of
POSIT with the random-choice heuristic produced an average search time (over 5000 problems) of 928 mil-
liseconds. The NEGAT heuristic led to a 9% reduction in search time, to 842 ms. The BPS heuristic pro-
duces an 8% reduction, to 857 ms. But as expected, the POSIT heuristic was 1% worse than random, at 936
ms/problem.

4.6.3. Earlier Experiments

I have also experimented with BPS in scheduling and other constraint-satisfaction problems (some very
early work is described in a 1994 paper [53]).

In these early experiments, I saw that one advantage of the BPS approach is that multiple heuristics can be
combined to form single estimates of probability (P) and search cost (C). Artificial intelligence techniques
have never offered powerful methods for combining heuristics. For example, in branch-and-bound algo-
rithms, the most common approach is to take the maximum of different admissible heuristics (admissible
heuristics are guaranteed to underestimate the actual solution cost). In the POSIT work, I combine two heu-
ristic features (pos_cost and neg_cost), and have experimented with other heuristics proposed for SAT prob-
lems.

Combining heuristics is important because individual heuristics may provide adequate estimates of cost (C)
or satisfiability (P) alone. For example, the “most constraining variable” heuristic is a measure of subtree
size and search cost: a variable which heavily constrains unassigned variables should generate a smaller
search tree. The “least constraining value” heuristic, on the other hand, preserves as many solutions as possi-
ble: a value with few constraints on other variables should maintain the probability that a solution will be
found.

Furthermore, the relationship between heuristic values and estimates of P or C may be subtle. For example,
the Minimum Domain heuristic suggests choosing the variable with the minimum number of remaining val-
ues. But experimental results suggested that Minimum Domain should really be broken into two cases: vari-
ables with a single remaining legal value should be selected (this is an instance of the general “unit
propagation” or “unit resolution” or “forced move” heuristic seen in other search problems), but otherwise,
larger domains were preferred in at least one benchmark. The performance advantage of unit propagation
may be so great that it skews the interpretation of the heuristic overall.

4.7. Related Work

Decision theory’s founders include Ramsey [106], von Neumann and Morgenstern [124], Wald [127], Cox
[30], de Finetti [37] and Savage [115]. For more information on the current state-of-the-art, see the excellent
texts by Clemens [27], Keeney and Raiffa [67], Raiffa [105], von Winterfeldt and Edwards [125], or Watson
and Buede [129], or the shorter articles by Henrion et al. [61], or Howard [62, 63].

Many researchers have applied decision theory and probability to heuristic search. Abramson [2] devised a
heuristic for two-player games using an assumption of random-play beyond the search frontier: he trained a
leaf-node heuristic estimator to predict the result of the game given random-play from that leaf. Baum and
Smith [8] have developed the “best play for imperfect players” approach, which uses probability to model
the imperfect decision-making of players (in direct contrast to Minimax), and to model the fact that more
information will be available by the time that a searched game-tree node has become the current node.
Boyan [22] applied predictive statistical techniques to stochastic search algorithms: his STAGE algorithm
uses reinforcement learning to predict the performance of a hillclimbing search, and uses this information to
find good starting points for hillclimbing. Mayer’s dissertation [80] evaluated the BPS approach on single-
agent problems such as the Eight Puzzle. Palay [96] developed a probabilistic version of Berliner’s B* algo-

70

rithm for two-player algorithms: his PB* algorithm represents and manipulates probability distributions over
game position evaluations between an upper and lower bound provided by heuristic estimates. Rather than
using the strict bounds to choose actions, PB* can commit to a move based on the probability that it is better
than other moves. Finally, Russell and Wefald [113] developed an extensive framework for metareasoning in
search control: they developed and evaluated algorithms for game-playing and problem-solving search.

Beyond the problem of search control, many other AI researchers have drawn on decision theory in the past
decade: a good portion of this work can be found in the proceedings of the annual conference on Uncertainty
in Artificial Intelligence. One particularly related topic is the efficient approximation of decision-theoretic
reasoning, although most of that work is focused on probabilities alone, and not expected utilities.

Others in AI have used test-sequencing concepts to control problem-solving, particularly diagnosis (Hecker-
man et al. [57]), but also search (Simon and Kadane [118]).

4.8. Summary

I have applied the Bayesian Problem-Solving approach to the search-ordering problem in backtracking
search for solving scheduling and constraint-satisfaction. I have shown how test-sequencing results fit into
the BPS approach, with both linear and exponential utility functions for computation time.

I have implemented the BPS search-ordering approach to control POSIT, a state-of-the-art propositional sat-
isfiability tester [45, 46], and demonstrated the behavior and effectiveness of BPS search ordering in this set-
ting. By estimating two utility attributes (probability that a solution exists, and computation time) based on
the evidence provided by heuristic functions, BPS is able to overcome a domain-specific performance anom-
aly in the built-in POSIT heuristic.

71

5 Summary and Future Directions

5.1. Summary

This dissertation has described several advances to the theory and practice of artificial intelligence schedul-
ing techniques, originally developed and implemented during the construction of DTS, the Decision-Theo-
retic Scheduler, and its successor, SchedKit, a toolkit of scheduling algorithms and data structures.

The dissertation’s three main chapters have focused on improving the efficiency of scheduling systems by
reducing the three terms in a stylized “problem-solving cost equation”:

• The first term is “seconds/state expansion”, a measure of search cost per state expanded: in Chapter
Three, I presented techniques for formalizing incremental computation of heuristics and constraints in a
scheduling search system.

• The second term is “state expansions/state space size,” a measure of the effectiveness of selective search
control: in Chapter Four, I have applied the Bayesian Problem-Solver approach to derive a search order-
ing heuristic for backtracking search.

• The third term, “state space size/problem,” is a broad characterization of the goal of problem formulation
and preprocessing: in Chapter Two, I presented two techniques that preprocess conjunctions of disjunc-
tive resource constraints in order to improve constraint tightness prior to search.

Chapter Two describes my research on reducing the size of the scheduling state space: I have developed two
new preprocessing algorithms, MPC1 and MPC2, designed to exploit resource constraints and resource
capacity prior to search.

• MPC1 extends the familiar critical path method to incorporate capacity constraints. The output of MPC1
is a set of tighter time constraints between pairs of events in the scheduling problem, based on the
resource capacity requirements of tasks that occur between each event pair.

• Experimental results with MPC1 show that it is effective on its own, but when combined with existing
temporal constraint processing algorithms, further improves their effectiveness in reducing the size of the
search tree. When the output of these preprocessors is fed into an off-the-shelf constraint solver
(clp(FD)), MPC1 is shown to provide a net factor of two improvement even on small problems, where
the cost of preprocessing is relatively higher.

seconds
problem
-------------------- seconds

state expansion
------------------------------------ state expansions

state space size
--------------------------------------- state space size

problem
------------------------------------⋅ ⋅=

72

• MPC2 reasons about the aggregate resource constraints of subprojects (groups of tightly constrained
tasks). Such subprojects are a common feature of NASA scheduling problems, where they represent the
time-phased experiments or observations requested by an individual space scientist. The output of MPC2
is a set of additional ordering constraints at the level of subprojects, based on lower bounds of resource
requirements and an analysis of possible overlap between pairs of subprojects.

• The MPC2 algorithm uses the interval-tree data structures described in Chapter Three. For example,
MPC2 requires an O(N2α(N)log(N)) step1 of constructing an “intermediate resource profile” data struc-
ture for each project, where N is the number of tasks in each subproject. This profile is added to another
profile in time O(N2α(N) log(Nα(N))), which is the time complexity of checking for an MPC2 ordering
constraint between two subprojects with N tasks each.

• Experimental results with MPC2 show that it is very likely to discover additional ordering constraints
even with moderate resource utilization. When the output of MPC2 is fed into an off-the-shelf constraint
solver (clp(FD)), MPC2 provides a net speedup of between 2 and 10 times that of temporal preprocessing
alone.

• I described a number of other preprocessing algorithms inspired by the basic MPC approach.

• Disjunction is generally a source of complexity for automated reasoning systems. The MPC techniques
described here can be viewed as grouping the disjunctive constraints into bundles that can be treated con-
junctively. I expect that future work will reveal better techniques for finding and exploiting tractable con-
juncts of disjunctive constraints.

Chapter Three describes my research on reducing the cost of state generation in scheduling search: I have
introduced the use of data structures that optimize heuristic evaluation, constraint-checking and state-vari-
able maintenance by exploiting incremental computation. The data structures combine technology from
computational geometry and attribute grammars.

• One approach to rapid state generation is to incrementally calculate heuristic evaluation functions and
constraint checks. I describe how an augmented interval tree (a data structure from the computational
geometry literature) is particularly appropriate for computation of scheduling heuristics and constraints.
If properly coded, the heuristic value or constraint status can be read off the root of the tree.

• Hand-coded interval tree data structures resulted in significant performance speedups (three orders of
magnitude) in early versions of DTS, because of the O(N)/O(log N) speedup due to the data structure.

• The augmented interval trees in DTS can be formally specified using attribute grammars, a tool devel-
oped by compiler theorists for formally specifying the parsing of programs. I describe and adapt the
attribute grammar formalism for my purposes.

• I present several examples of attribute grammar specifications of heuristics and constraint checks. The
specifications can also represent state variables (e.g., battery power, machine configuration).

• I discuss how the attribute grammar technology might be used to design application-specific schedule
editors that check constraints interactively but efficiently.

Finally, Chapter Four describes my research on reducing the number of states examined during search. Con-
tinuing my earlier research on using decision theory to control search, I have applied the Bayesian Problem-
Solver (BPS) approach to control search ordering in a backtracking algorithm.

• For search ordering, I have shown how test-sequencing results fit into the BPS approach, and extended
these results to handle exponential utility functions for handling computational deadlines.

1. α(N) is the extremely slowly growing inverse of Ackerman’s function.

73

• I have implemented the BPS search-ordering heuristic to control POSIT, a state-of-the-art propositional
satisfiability tester [45, 46] built upon backtracking search. These experiments demonstrate the effective-
ness of BPS search ordering in this setting, although the possible improvement in search ordering is
small in these benchmarks.

• By explicitly estimating and combining P(satisfiability | heuristics) and E[search cost | heuristics] from
training problems, BPS is able to closely approximate the ideal ordering across eight problem sets drawn
from two benchmarks (Hard Random K-SAT and graph-coloring). In contrast, POSIT’s built-in search
ordering heuristic fails on half of these problem sets, producing results that are worse than random choice
for Hard Random K-SAT.

5.2. Future Directions

5.2.1. Preprocessing Resource Constraints

The results of Chapter Two can be extended in a number of ways. The MPC2 algorithm reasons about the
resource requirements of pairs of subprojects in the hopes of finding new ordering constraints implied by
their internal temporal and resource constraints. MPC2 could be improved by incorporating additional con-
straints. For example, a bound on the schedule’s “makespan” (schedule length) could tighten the bounds
offered by the start-profile, end-profile and intermediate-profile, because inter-task delays in the subproject
might have to be compressed. An extension of this would be a test for whether a set of subprojects can be
completed if they must be scheduled within a specified time interval.

It would also be interesting to extend MPC2 to deal with ordering decisions over groups of subprojects. One
possibility is to first consider the minimum delay between the start of two subprojects: if subproject A starts
before subproject B, how much delay must there be between the two start times? Given this information, one
might then be able to prove that a given subproject cannot be or must be started before all others, because of
these delays (following the example of Carlier and Pinson [24] in the job-shop scheduling problem).

5.2.2. State-Generation and Resource Management

Chapter Three introduced an interval-tree data structure and a specification mechanism for designing effi-
cient state generators. There are several challenges in making these techniques more useful for scheduling
applications.

The interval tree provides a means for representing state variables (e.g., the charge level of a battery) during
scheduling. This would be more practical if we could import existing state-machine models directly into the
attribute grammar model. For example, in the NASA DS1 Remote Agent system [91], the most detailed
model of spacecraft state transitions exists in the diagnostic system, not in the scheduling system. Reusing
these diagnostic models would require a translator from the Remote Agent concurrent transition system
models into the simpler models supported by the attribute grammar.

The interval-tree data structures are well-suited to support reasoning about resources in scheduling systems,
i.e., to support queries such as the following.

• Are C units of resource R available at any time?

• What is the earliest time during interval I that C units of resource R are available?

• At what time during interval I is resource R most overallocated?

• Are there any underflows (overallocations) on resource R during interval I?

• In what state is resource R at time T?

74

These queries are essential in checking constraints, expanding search nodes, and evaluating scheduling heu-
ristics. Queries such as these are used by both constructive (e.g., branch-and-bound) and iterative improve-
ment (e.g., repair-based) scheduling algorithms.

In future work, I hope to extend the existing mechanisms in SchedKit and DTS into a general system for rea-
soning about resources: a Resource Map Manager. The name borrows from the Time Map Manager devel-
oped by Dean and McDermott [35], one of several systems which provides such omnibus support for
temporal reasoning. But such systems do not provide general reasoning about resource availability, capacity,
and state. A Resource Map Manager would be a valuable, reusable component for use in scheduling sys-
tems.

5.2.3. Decision Analytic Search Control

Chapter Four presented a search-ordering heuristic that is based on an explicit decision-theoretic analysis. In
earlier research, this Bayesian Problem-Solving approach was applied to limited-time search decisions in
single-agent problem-solving [80].

There are two major technical obstacles to the Bayesian Problem-Solving approach:

• BPS has high statistical estimation and computational requirements, because of the underlying costs of
exact probabilistic inference [98].

• Reasoning about the expected utility of continued search is difficult because, among other reasons, the
decision tree is very large (the sequence of search computations is potentially infinite). Other approaches
to decision-theoretic search have used a myopic decision-making assumption to address this problem, but
this typically underestimates the expected utility of continued search [113].

In light of these obstacles, the search-ordering analysis in Chapter Four is interesting because it evaluates
two infinite decision trees by finding a closed form for the difference between the expected utilities. The
expected utility of searching subtree A before subtree B is never computed directly (doing so would require a
means of dealing with the large subtree that results if neither A nor B contain a solution).

Decision analysts and others have long known that it is not necessary to compute expected utilities directly
in order to find the maximum expected utility decision (just as it is not necessary to sort a list in order to find
the maximum element). Practicing decision analysts would not be able to carry out or explain their analyses
to clients if exact computations were required: only by appropriate bounding and dominance arguments can
they find short “proofs” to support the recommended decision. More generally, statisticians have long relied
on bounding and approximation techniques to make statistical techniques practical (e.g., see the textbooks
by Press [103], Holloway [58], Kennedy and Gentile [70], or Thisted [121]). And the fact that bounds can be
used to limit computation has been exploited by previous search algorithms such as B* [11] and the deci-
sion-theoretic algorithms of Russell and Wefald [113].

Inspired by these lines of research, my current focus is to develop a decision-theoretic search algorithm that
employs bounding and dominance arguments, in the hopes of overcoming the obstacles of myopia and the
computational cost of exact probabilistic inference. There is much work to be done before the merits of this
approach can be determined, but so far I have identified a number of promising techniques for computing
upper and lower bounds on expected utility. These include reordering decision trees, adding or removing
choices to decision trees, using upper- and lower-bound integration techniques such as the Riemann rule,
and bounding the utility function directly.

I will sketch an analysis of “myopic” reasoning to give a flavor of the use of upper and lower bounds. When
using decision theory to decide whether to continue search, one needs to evaluate a potentially long
sequence of search computations: the myopic simplification is to consider only the first chunk of computa-
tion. This is called the “single-step” assumption in Russell and Wefald’s MGSS* algorithm. What effect
does myopic reasoning have on decision-theoretic control of search? The key point is that myopic reasoning

75

is a way of underestimating the value of a sequence of computations. Figure 5-1 describes the relation
between myopia and lower-bounds. That myopic reasoning produces a lower bound is seen by the fact that it
removes choices from the decision tree, which can never increase expected utility

My initial testbed for the bounding approach is the MAXSAT problem. MAXSAT is the generalization of
propositional satisfiability where we seek to maximize the number of satisfied clauses. Because of its objec-
tive function, the problem is more difficult and computationally intensive for the BPS approach. Searching a
subtree in SAT either produces a satisfying assignment or not, and so we need only estimate P[satisfiable |
heuristics]. In MAXSAT, searching a subtree must be analyzed in terms of the probability distribution over
possible increases in the number of satisfied clauses. One of the many approaches to bounding the expected
utility of searching a subtree is to use an aspiration level K for the number of satisfied clauses, and estimate
P[K clauses satisfied | heuristics].

A second line of further work is to use decision analysis to re-analyze the heuristics built into high-perfor-
mance search algorithms. For example, POSIT uses two heuristics, but “the second, BCP-based, heuristic is
much more powerful but too slow to run on every open proposition at every node of the search tree” [45, p.
42]. Accordingly, POSIT’s designer established cutoffs to trade off the benefit of the better heuristic against
its increased cost. But these cutoffs are fragile: “POSIT’s running time is very sensitive to the exact value of
unfailed-lit-limit elsewhere in the search tree; I have found that a value of 3 is just about right for most prob-
lems” [45, p. 52]. It would be challenging to formalize and perhaps improve such ad hoc design decisions
using an explicit decision analysis.

76

Figure 5-1. Lower-Bound on the EU of an Infinite Computation Sequence.
In this example we have found a feasible schedule B, and are deciding whether to
continue searching in the hopes of finding a better schedule A. If we search and
fail, we still have schedule B, but with a penalty of the time cost of searching.
The bottom decision tree is the “single-step assumption” simplification of the
first, such that gamble g1 has expected utility at least as great as gamble g1’,
EU(g1) ≥ EU(g1’), because choice nodes have been restricted in the second dia-
gram. Thus, if EU(g1’) ≥ EU(2), then EU(g1) ≥ EU(g2). Note that EU(g1’) is
easily evaluated, while EU(g1) requires the evaluation of the infinite sequences
denoted by question marks.

P

1-P

Schedule B- time costg2: Schedule B (in hand)
Choice

Chance

g1

Compute

Stop

Schedule A

Compute

Stop

Compute

Stop

?

?

P

1-P

Schedule B- time cost
g2: Schedule B (in hand)

Choice

Chance

g1’

Compute

Stop

Outcome A

Stop

Stop

77

References

Papers by Othar Hansson can be obtained by sending electronic mail to othar@acm.org.
An online version of the bibliography is also available. Some references are available on
the Internet: for these, a URL (Uniform Resource Locator) is provided in brackets.

1] E. H. L. Aarts, P. J. M. van Laarhoven, J. K.
Lenstra and N. L. J. Ulder. “A Computational
Study of Local Search Algorithms for Job
Shop Scheduling.” ORSA Journal on
Computing, 6(2):118-125, 1994.

2] Bruce D. Abramson. The expected-outcome
model of two-player games. Morgan
Kaufmann, San Mateo, CA, 1991.

3] Alfred V. Aho, Ravi Sethi and Jeffrey D.
Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA,
1986.

4] Ravindra K. Ahuja, Thomas L. Magnanti and
James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall,
Englewood Cliffs, NJ, 1993.

5] Kenneth J. Arrow. Social Choice and
Individual Values. (Cowles Commission
Monograph 12). Wiley, New York, 1951.

6] Philippe Baptiste and Claude Le Pape.
“Constraint Propagation and Decomposition
Techniques for Highly Disjunctive and
Highly Cumulative Project Scheduling
Problems.” In Principles and Practice of
Constraint Programming - CP97, Linz,
Austria, 1997.

7] Anthony Barrett and Daniel S. Weld.
“Partial-Order Planning: Evaluating Possible
Efficiency Gains.” Technical Report 92-05-
01 Expanded Version, Dept. of Computer
Science and Engineering, Univ. of
Washington, 1993.

8] Eric B. Baum and Warren D. Smith. “A
Bayesian Approach to Relevance in Game
Playing.” Artificial Intelligence, 97(1-2):195-
242, 1997.

9] Howard A. Beck. “Constraint Monitoring in
TOSCA.” In Working Papers of AAAI Spring
Symposium: Practical Approaches in
Planning and Scheduling, Stanford, CA,
March 1992. Also available from Artificial
Intelligence Applications Institute
(Edinburgh), Technical Report AIAI-TR-
118, December 1992 (http://
www.aiai.ed.ac.uk/~hab/Papers/aaai92.ps)

10] Richard E. Bellman. “On a routing problem.”
Quarterly of Applied Mathematics, 16(1):87-
90, 1958.

11] Hans J. Berliner. “The B* Tree Search
Algorithm: A Best-First Proof Procedure.”
Artificial Intelligence, 12(1):23-40, 1979.

12] Hans J. Berliner and Carl Ebeling. “Pattern
Knowledge and Search: The SUPREM
Architecture.” Artificial Intelligence,
38(2):161-198, 1989.

13] K. Bhaskaran and Michael Pinedo.
“Dispatching.” In G. Salvendy (ed.),
Handbook of Industrial Engineering. Wiley,
New York, 1991.

14] Kurt M. Bischoff. “Ox: An Attribute-
Grammar Compiling System based on Yacc,
Lex, and C: Tutorial Introduction.”
Department of Computer Science, Iowa State
University, Ames, Iowa, 1994. [ftp://
ftp.cs.iastate.edu/pub/ox/*]

78

15] Kurt M. Bischoff. “Ox: An Attribute-
Grammar Compiling System based on Yacc,
Lex, and C: User Reference Manual.”
Department of Computer Science, Iowa State
University, Ames, Iowa, 1994. [ftp://
ftp.cs.iastate.edu/pub/ox/*]

16] J. T. Black. The Design of the Factory With a
Future. McGraw-Hill, 1991.

17] J. H. Blackstone, D. T. Phillips and G. L.
Hogg. “A state-of-the-art survey of
dispatching rules for manufacturing job shop
operations.” International Journal of
Production Research, 20:27-45, 1982.

18] Mark Boddy and Thomas Dean.
“Deliberation Scheduling for Problem
Solving in Time-Constrained
Environments.” Artificial Intelligence,
67(2):245-285, 1994.

19] Jean-Daniel Boissonnat and Mariette
Yvinec. Algorithmic Geometry. Cambridge
University Press, 1998.

20] Stuart Bowyer. “The Extreme Ultraviolet
Explorer Mission.” In T. Kondo (ed.),
Observatories in Earth Orbit and Beyond,
Kluwer Academic Publishers, 1990.

21] Stuart Bowyer. “Extreme Ultraviolet
Astronomy.” Scientific American, 271(2):32
ff., 1994.

22] Justin A. Boyan. Learning Evaluation
Functions for Global Optimization. PhD
Dissertation, Carnegie-Mellon University,
1998.

23] Gilles Brassard and Paul Bratley.
Algorithmics: Theory and Practice. Prentice-
Hall, Englewood Cliffs, NJ, 1988.

24] Jacques Carlier and E. Pinson. “An algorithm
for solving the job-shop problem.”
Management Science, 35:164-176, 1989.

25] Center for Extreme Ultraviolet Astrophysics
[CEA]. EUVE Guest Observer Handbook.
Appendix G of NASA NRA 92-OSSA-5,
Berkeley, CA, January 1992. [Other
information is available through the World
Wide Web, http://www.cea.berkeley.edu]

26] Peter Cheeseman, Bob Kanefsky and
William M. Taylor. “Where the Really Hard
Problems Are.” In Proceedings of the Twelfth
International Joint Conference on Artificial
Intelligence, Sydney, 1991.

27] Robert Clemen. Making Hard Decisions.
Second Edition. Duxbury Press, Wadsworth
Publishing, Belmont, CA, 1995.

28] Philippe Codognet and Daniel Diaz.
“Compiling Constraints in clp(FD).” Journal
of Logic Programming, 27(3):185-226, 1996.

29] Thomas H. Cormen, Charles E. Leiserson
and Ronald L. Rivest. Introduction to
Algorithms. McGraw Hill and MIT Press,
1990.

30] R. T. Cox. “Probability, Frequency and
Reasonable Expectation.” American Journal
of Physics, vol. 14, 1946.

31] James M. Crawford and Larry D. Auton.
“Experimental Results on the Crossover
Point in Satisfiability Problems.” In
Proceedings of the Eleventh National
Conference on Artificial Intelligence,
Washington, DC., 1993.

32] G. Dantzig. “Linear Programming.” pp. 19-
31 in Lenstra, Rinnooy Kan and Schrijver,
eds. [76].

33] Martin Davis, George Logemann and Donald
Loveland. “A Machine Program for Theorem
Proving.” Communications of the ACM,
5:394-397, 1962.

34] Martin Davis and Hilary Putnam. “A
Computing Procedure for Quantification
Theory.” Journal of the ACM, 7:201-215,
1960.

35] Thomas Dean and Drew V. McDermott.
“Temporal Data Base Management.”
Artificial Intelligence, 32(1): 1-55, 1987.

36] Rina Dechter, Itay Meiri and Judea Pearl.
“Temporal Constraint Networks.” Artificial
Intelligence, 49(1-3):61-95.

37] Bruno de Finetti. Theory of Probability.
Wiley, 1974.

38] Daniel Diaz. clp(FD) Software version 2.22,
1998. [ftp://ftp.inria.fr/INRIA/Projects/
ChLoE/LOGIC_PROGRAMMING/clp_fd/]

79

39] James R. Driscoll, Neil Sarnak, Daniel D.
Sleator and Robert E. Tarjan. “Making Data
Structures Persistent.” In Proceedings of the
Eighteenth Annual ACM Symposium on the
Theory of Computing [STOC], 1986.

40] Dingzhu Du, Jun Gu and Panos M. Pardalos.
Satisfiability Problem: Theory and
Applications. DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science: vol 35. American Mathematical
Society, Providence, RI, 1997.

41] O. Dubois, P. Andre, Y. Boufkhad and J
Carlier. “SAT versus UNSAT.” pp. 415-436
in Johnson and Trick [64].

42] Oren Etzioni and Daniel S. Weld.
“Intelligent Agents on the Internet: Fact,
Fiction, and Forecast.” IEEE Expert,
10(4):44-49, 1995.

43] Mark S. Fox. “ISIS: A Retrospective.”
Chapter 1 in Zweben and Fox [135].

44] Mark S. Fox and Norman Sadeh. “Why is
Scheduling Difficult? A CSP Perspective.” In
Proceedings of the European Conference on
Artificial Intelligence, Stockholm, 1990.

45] Jon W. Freeman. Improvements to
Propositional Satisfiability Search
Algorithms. PhD Dissertation, University of
Pennsylvania, 1995.

46] Jon W. Freeman. POSIT: Propositional
Satisfiability Testbed. Software Version 1.0,
1994. [ftp://ftp.cis.upenn.edu/pub/freeman]

47] Michael R. Garey and David S. Johnson.
Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman,
San Francisco, 1979.

48] Eliyahu M. Goldratt and Jeff Cox. The Goal:
A Process of Ongoing Improvement. North
River Press, Croton-on-Hudson, NY, 1986.
Revised Edition.

49] Othar Hansson and Andrew Mayer.
“Probabilistic Heuristic Estimates.” Annals
of Mathematics and Artificial Intelligence,
2:209-220, 1990.

50] Othar Hansson and Andrew Mayer. “The
Optimality of Satisficing Solutions.” In
Proceedings of the Fourth Workshop on
Uncertainty in Artificial Intelligence,
Minneapolis, 1988.

51] Othar Hansson and Andrew Mayer.
“Heuristic Search as Evidential Reasoning.”
In Proceedings of the Fifth Workshop on
Uncertainty in Artificial Intelligence,
Windsor, Ontario, 1989.

52] Othar Hansson and Andrew Mayer. “A New
and Improved Product Rule.” In Proceedings
of the Eighth Internatonal Congress of
Cybernetics & Systems, New York, 1990.

53] Othar Hansson and Andrew Mayer. “DTS: A
Decision-Theoretic Scheduler for Space
Telescope Applications.” Chapter 13 in
Zweben and Fox [135].

54] Othar Hansson and Andrew Mayer. “DTS: A
Toolkit for Building Custom, Intelligent
Schedulers.” paper presented at i-SAIRAS
conference, Pasadena, CA, October, 1994.

55] Othar Hansson, Andrew Mayer and Stuart J.
Russell. “Decision-Theoretic Planning in
BPS.” In Proceedings of the AAAI Spring
Symposium on Planning in Uncertain,
Unpredictable, or Changing Environments,
Stanford, CA, 1990.

56] Daishi Harada. “Reinforcement Learning
with Time.” In Proceedings of the Fourteenth
National Conference on Artificial
Intelligence, Providence, RI, 1997.

57] David Heckerman, John S. Breese and Koos
Rommelse. “Decision-Theoretic
Troubleshooting.” Communications of the
ACM, 38(3):49-57, 1995.

58] C. A. Holloway. Decision Making under
Uncertainty: Models and Choices. Prentice-
Hall, Englewood Cliffs, NJ, 1979.

59] Roger Scott Hoover. Incremental Graph
Evaluation. PhD Dissertation, Cornell
University, 1987. [Available as CS Technical
Report 87-836.]

80

60] Eric J. Horvitz. Computation and Action
under Bounded Resources. PhD Thesis,
Stanford University, 1990. [Available as
Knowledge Systems Laboratory Report
KSL-90-76.]

61] E.J. Horvitz, J.S. Breese and M. Henrion.
“Decision Theory in Expert Systems and
Artificial Intelligence.” Journal of
Approximate Reasoning, Special Issue on
Uncertainty in Artificial Intelligence, 2:247-
302, 1988.

62] Ronald A. Howard. “Information Value
Theory.” IEEE Transactions on Systems,
Man, and Cybernetics, vol. SSC-2, 1965.

63] Ronald A. Howard. “Decision Analysis:
Practice and Promise.” Management Science,
34:679-695.

64] David S. Johnson and Michael Trick (eds.).
Cliques, Coloring, and Satisfiability.
DIMACS Series in Discrete Mathematics and
Theoretical Computer Science: vol 26.
American Mathematical Society, Providence,
RI, 1996.

65] Laveen Kanal and Vipin Kumar (eds.).
Search in Artificial Intelligence. Springer-
Verlag, New York, 1988

66] Randy H. Katz. Section 12.3 (Jump Counter)
in Contemporary Logic Design. Benjamin
Cummings/Addison Wesley Publishing
Company, 1993.

67] Ralph L. Keeney and Howard Raiffa.
Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. Wiley,
1976.

68] J. E. Kelley, Jr. “Critical Path Planning and
Scheduling, Mathematical Basis.”
Operations Research, 9(3):296-320, 1961.

69] J. E. Kelley, Jr. “The Critical Path Method:
Resources Planning and Scheduling.”
Chapter 21 in Muth & Thompson [93].

70] William J. Kennedy, Jr. and James E.
Gentile. Statistical Computing. Marcel
Dekker, New York, 1980.

71] Donald E. Knuth. “Semantics of Context-
Free Languages.” Mathematical Systems
Theory, 2(2):127-145, 1968.

72] Amy L. Lansky. “Localized Planning with
Diversified Plan Construction Methods.”
Technical Report FIA-93-17, NASA Ames
Research Center, Artificial Intelligence
Research Branch, June 1993.

73] Eugene L. Lawler. “Old Stories.” pp. 97-106
in Lenstra, Rinnooy Kan and Schrijver [76].

74] Eugene L. Lawler, Jan Karel Lenstra,
Alexander H. G. Rinnooy Kan and David B.
Shmoys. “Sequencing and Scheduling:
Algorithms and Complexity.” Technical
Report BS-R8909, Centre for Mathematics
and Computer Science, Amsterdam, 1989.
[Also appeared as pp. 445-522 in S. C.
Graves et al. (eds.), Handbooks in OR & MS,
Vol. 4, Elsevier, 1993.]

75] Kai-Fu Lee. Automatic Speech Recognition:
The Development of the SPHINX System.
Kluwer Academic, Boston, 1989.

76] Jan Karel Lenstra, Alexander H.G. Rinnooy
Kan, Alexander Schrijver, editors. History of
Mathematical Programming: collection of
personal reminiscences. North-Holland, New
York, 1991.

77] John R. Levine, Tony Mason and Doug
Brown. lex & yacc. O’Reilly & Associates,
Sebastopol, CA, 1992.

78] David Levy and Monyy Newborn. How
Computers Play Chess. Computer Science
Press (W. H. Freeman), New York, 1991.

79] Kim Marriott and Peter J. Stuckey.
Programming with Constraints: An
Introduction. MIT Press, 1998.

80] Andrew Mayer. Rational Search. Ph.D.
Dissertation, University of California,
Berkeley, 1994.

81] Itay Meiri. Temporal Reasoning: A
Constraint-Based Approach. Ph.D.
Dissertation, University of California, Los
Angeles, 1991. [Available as Technical
Report CSD-920019, Computer Science
Department.]

81

82] Steven Minton, John Bresina and Mark
Drummond. “Commitment strategies in
planning: A comparative analysis.” In
Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence,
Sydney, 1991.

83] Steven Minton, Mark Johnston, Andrew
Philips and Philip Laird. “Solving Large-
Scale Constraint-Satisfaction and Scheduling
Problems using a Heuristic Repair Method.”
In Proceedings of the Eighth National
Conference on Artificial Intelligence,
Boston, 1990.

84] David Mitchell, Bart Selman and Hector
Levesque. “Hard and easy distributions of
SAT problems.” In Proceedings of the Tenth
National Conference on Artificial
Intelligence, San Jose, CA, 1992.

85] L. G. Mitten. “An Analytic Solution to the
Least Cost Testing Sequence Problem.”
Journal of Industrial Engineering, vol. 11,
1960.

86] U. Montanari. “Networks of Constraints:
Fundamental Properties and Applications to
Picture Processing.” Information Processing
Letters, vol. 7, 1974.

87] Thomas E. Morton and David W. Pentico.
Heuristic scheduling systems: with
applications to production systems and
project management. Wiley, 1993.

88] Nicola Muscettola, Stephen F. Smith. “A
Probabilistic Framework for Resource-
Constrained Multi-Agent Planning.” In
Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Milan,
1987.

89] Nicola Muscettola and Stephen F. Smith.
“Integrating Planning and Scheduling to
Solve Space Mission Scheduling Problems.”
In Proceedings of the DARPA Planning
Workshop. Morgan Kaufmann, San Mateo,
CA, 1990.

90] Nicola Muscettola. “HSTS: Integrating
Planning and Scheduling.” Chapter 6 in
Zweben and Fox [135].

91] Nicola Muscettola, P. Pandurang Nayak,
Barney Pell, Brian C. Williams. “Remote
Agent: to boldly go where no AI system has
gone before.” Artificial Intelligence, 103:5-
47, 1998.

92] Nicola Muscettola, Barney Pell, Othar
Hansson and Sunil Mohan. “Automating
mission scheduling for space-based
observatories.” In G.W. Henry and J.A.
Eaton (eds), Robotic Telescopes: Current
Capabilities, Present Developments, and
Future Prospects for Automated Astronomy.
ASP Conference Series, Vol. 79.
Astronomical Society of the Pacific, San
Francisco, 1995.

93] John F. Muth and Gerald L. Thompson,
editors. Industrial Scheduling. Prentice-Hall,
Englewood Cliffs, NJ, 1963.

94] Dana S. Nau, Vipin Kumar and Laveen
Kanal. “General Branch and Bound, and its
Relation to A* and AO*.” Artificial
Intelligence, 23(1): 29-58, 1984.

95] Monroe Newborn. Kasparov Versus Deep
Blue: Computer Chess Comes of Age.
Springer Verlag, 1996.

96] Andrew J. Palay. Searching With
Probabilities. Morgan Kaufmann, San
Mateo, CA, 1985.

97] Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem-Solving.
Addison-Wesley, Reading, MA, 1984.

98] Judea Pearl. Probabilistic Reasoning in
Intelligent Systems. Morgan Kaufmann, San
Mateo, CA, 1988.

99] Judea Pearl and Glenn Shafer. Readings in
Uncertain Reasoning. Morgan Kaufmann,
San Mateo, CA, 1988.

100] Joseph C. Pemberton and Flavius Galiber,
III. “A Constraint-Based Approach to
Satellite Scheduling.” Paper presented at the
DIMACS Workshop on Constraints and
Large Scale Discrete Optimization, Rutgers
University, Piscataway, NJ, September 1998.
[http://www.greas.com/papers/]

82

101] David Poole, Alan Mackworth and Randy
Goebel. Computational Intelligence: A
Logical Approach. Oxford University Press,
1998.

102] Franco Preparata and Michael I. Shamos.
Computational Geometry. Springer-Verlag,
New York, 1985.

103] James S. Press. Bayesian Statistics:
Principles, Models, and Applications. Wiley,
1989.

104] Howard Raiffa. In The Harvard Guide to
Influential Books, C. Maury Devine (ed.),
Harper, 1986.

105] Howard Raiffa. Decision Analysis. McGraw
Hill, 1997.

106] Frank P. Ramsey. The Foundations of
Mathematics and other Logical Essays.
Littlefield Adams, London, 1960.

107] Thomas W. Reps. Generating language-
based environments. MIT Press, 1984.

108] Thomas W. Reps and Tim Teitelbaum. The
Synthesizer Generator: a System for
Constructing Language-Based Editors.
Springer-Verlag, 1989.

109] Thomas W. Reps and Tim Teitelbaum. The
Synthesizer Generator Reference Manual.
Springer-Verlag, 1989, 3rd edition.

110] Stuart J. Russell. “Rationality and
Intelligence.” Artificial Intelligence, 94(1-2):
57-77, 1997.

111] Stuart Russell and Devika Subramanian.
“Provably bounded-optimal agents.” Journal
of Artificial Intelligence Research, 2, 1995.
[www.jair.org]

112] Stuart J. Russell and Eric Wefald. “Principles
of Metareasoning.” Artificial Intelligence,
49(1-3): 361-395, 1991.

113] Stuart J. Russell and Eric Wefald. Do the
Right Thing: Studies in Limited Rationality.
MIT Press, Cambridge, MA, 1991.

114] Norman Sadeh. Lookahead Techniques for
Micro-Opportunistic Job-Shop Scheduling.
Ph.D. Dissertation, Carnegie Mellon
University, 1991.

115] L. J. Savage. The Foundations of Statistics.
Dover, New York, 1972.

116] Micha Sharir and Pankaj K. Agarwal.
Davenport-Schinzel Sequences and Their
Geometric Applications. Cambridge
University Press, 1995.

117] Yoav Shoham. “Agent-Oriented
Programming.” Artificial Intelligence, 60(1):
51-92, 1993.

118] Herbert A. Simon and Joseph B. Kadane.
“Optimal Problem-Solving Search: All-or-
None Solutions.” Artificial Intelligence, vol.
6, 1975.

119] Douglas R. Smith and Eduardo A. Parra.
“Transformational Approach to
Transportation Scheduling.” In Proceedings
KBSE ‘93: The Eighth Knowledge-Based
Software Engineering Conference. IEEE
Computer Society Press, 1993.

120] Gerald Tesauro. “Temporal Difference
Learning and TD-Gammon.”
Communications of the ACM, 38(3): 58-68,
1995.

121] Ronald A. Thisted. Elements of Statistical
Computing. Chapman & Hall, New York,
1988.

122] Edward Tsang. Foundations of Constraint
Satisfaction. Academic Press, New York,
1993.

123] Pascal van Hentenryck. Constraint-
Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989.

124] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior.
Princeton University Press, 1944.

125] Detlof von Winterfeldt and Ward Edwards.
Decision Analysis and Behavioral Research.
Cambridge University Press, 1986.

126] William M. Waite. Compiler Construction.
Springer Verlag, NY, 1984.

127] Abraham Wald. Statistical Decision
Functions. Wiley, 1950.

83

128] David Waltz. “Understanding line drawings
of scenes with shadows.” In P. H. Winston
(ed.), The Psychology of Computer Vision,
McGraw-Hill, 1975.

129] Stephen R. Watson and Dennis M. Buede.
Decision synthesis : the principles and
practice of decision analysis. Cambridge
University Press, 1987.

130] H. P. Williams. Model Solving in
Mathematical Programming. John Wiley &
Sons, 1993.

131] Wayne L. Winston. Introduction to
Mathematical Programming: Applications
and Algorithms. PWS-Kent Publishing Co.,
Boston, 1991.

132] James P. Womack, Daniel T. Jones and
Daniel Roos. The Machine that Changed the
World: How Japan’s Secret Weapon in the
Global Auto Wars will Revolutionize Western
Industry. Harper Perennial, New York, 1990.

133] Shlomo Zilberstein. Operational Rationality
through Compilation of Anytime Algorithms.
Phd Dissertation, University of California,
Berkeley, 1993.

134] Monte Zweben, Brian Daun, Eugene Davis,
and Michael Deale. “Scheduling and
Rescheduling with Iterative Repair.” Chapter
8 in Zweben and Fox [135].

135] Monte Zweben and Mark S. Fox (eds.).
Intelligent Scheduling. Morgan Kaufmann,
San Francisco, 1994.

